
Egeria: Efficient DNN Training with
Knowledge-Guided Layer Freezing

Yiding Wang, Decang Sun, Kai Chen (HKUST),  
Fan Lai, Mosharaf Chowdhury (University of Michigan)

￼1

Motivation
• Large models (#layers and #parameters) and datasets make DNN

training time-consuming.

• An iteration of data-parallel training over a mini-batch of dataset
includes:

1. Forward pass (light computation)

2. Backward pass (heavy computation)

3. Parameter synchronization (communication)

￼2

Motivation
• Communication scheduling (ByteScheduler, SOSP ’19). Theoretically

optimal.

￼3

Motivation

• System optimizations (e.g., communication scheduling and pipeline
parallelism) accelerate ML workload by making operations efficient (e.g.,
less idle GPU time).

• One more step: Can we further reduce the ML workload (with the same
model quality) to accelerate training from the source?

• Reducing workload (lossy) should work together with existing (lossless)
optimizations.

￼4

Motivation
• The training progress of DNN layers differs significantly: The front layers

process general features and deep layers handle task-specific features.

• The front layers converge earlier than deep layers:

￼5

How transferable are features in deep neural networks?
Ghahramani etc., NeurIPS ’14. Image: PWCCA, Morcos etc.

A Potential Solution
• Intuition: We can freeze the front layers when they are converged, so

that the backward pass and parameter sync can be skipped!

• Challenge: How to accurately identify the freezable layers to accelerate
training while maintain accuracy?

￼6

Skip BP

Inputs Outputs
We tried a gradient-

based method, but it
causes accuracy loss.

Learning From ML Research
• We turn to knowledge distillation (KD).

• KD: Using the difference of internal
activation of layers compared to a
trained teacher to train a student
model by minimizing the distill. loss.

• Hard label (gradients) is not enough.

• Our goal is the same! (understanding
a layer’s training progress)

￼7
Similarity-Preserving Knowledge Distillation Tung etc., ICCV ’19

Using a Reference Model in Training
• Egeria compares the training model’s

layer activation to a reference model
(a snapshot of the training model) to
understand the progress!

• One KD loss used in ML work is
Similarity Preserving (SP) loss.

• We define a system metric plasticity as
the negative and normalized SP loss.

• Low plasticity over time -> slow change.

￼8

Training
model

Reference
model

Freezing Criteria & Hyperparameters
• Freezing layers is a lossy training acceleration technique: Misfreezing

would hurt the DNN accuracy.

• We design an algorithm to analyze plasticity values and make freezing
decisions.

• The intuition is that if some layers’ plasticity is no longer changing, then
we can freeze these layers and move on.

• Hyperparameters: Evaluation frequency, thresholds of how small and
how long. We use human expertise to set them for now. Not strict.

￼9

Egeria Overview
• System efficiency: Reference model and control plan are on CPUs.

• Accuracy: Freezing a layer when confident. Unfreezing & re-freezing.

￼10

Input DNN

Get layer modules
from DNN structure

DNN training on the GPU

while hooking intermediate activations

Run the reference
model forward
asynchronously

Evaluate plasticity
of a layer module
w/ SP loss etc.

Make layer
freezing
decision

Save frozen
layers’ activations

to the disk

Prefetch
activations to the

GPU memory

Cache

Bootstrapping stage Knowledge-guided training stage

GPU

CPU Generate the
reference model

Update the
reference model

Freeze a layer
module

Skip BP
Skip both

FP & BP

Load
activations 4.1§ 4.1§

 4.1§ 4.2§ 4.2§ 4.3§ 4.3§

Compare
intermediate
activations

 4.2§

IQ.put()

reference.forward()

TOQ
.put()

train.forward()

…

IQ.get() ROQ.put()

TOQ.get()
ROQ.get()

Plasticity P(l)
i

CPU
GPU

 A(l)
R

 A(l)
T

Run plasticity eval.Init. plasticity eval.

BP and loop Freeze layers
based on P(l)

i
Data

Input data
queue (IQ)

Ref. output
queue (ROQ)

Train output
queue (TOQ)

ControllerWorker

System Efficiency
• Avoid blocking GPU computation with asynchronous execution.

￼11

Evaluation: TTA Speedup
• Baseline: Naive PyTorch. Single GPU and data parallelism.

￼12

Evaluation: Freezing Breakdown
• How Egeria freezes and unfreezes layers during ResNet-56 training.

Blanks are skipped layers.

￼13

Evaluation: Reference Model
• A quantized reference model is accurate enough and faster on the CPU.

• The time overhead of reference model is only 1.5% of the overall time.

￼14

Thank you!

• Egeria accurately freezes the converged layers and saves their
computation and communication costs.

• It uses knowledge distillation and transfer learning techniques.

• We propose the training plasticity metric to quantify layers' training
progress since different layers converge differently during training.

• It accelerates DL training by 19%-43% without sacrificing accuracy.

￼15

