Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing

Yiding Wang, Decang Sun, Kai Chen (HKUST), Fan Lai, Mosharaf Chowdhury (University of Michigan)

- Large models (#layers and #parameters) and datasets make DNN training **time-consuming**.
- An iteration of data-parallel training over a mini-batch of dataset includes:
 - 1. Forward pass (light computation)
 - 2. Backward pass (heavy computation)
 - 3. Parameter synchronization (communication)

Communication scheduling (By optimal.

• Communication scheduling (ByteScheduler, SOSP '19). Theoretically

- System optimizations (e.g., communication scheduling and pipeline parallelism) accelerate ML workload by making operations efficient (e.g., less idle GPU time).
- One more step: Can we further reduce the ML workload (with the same model quality) to accelerate training from the source?
- Reducing workload (lossy) should work together with existing (lossless) optimizations.

- The front layers converge earlier than deep layers:

• The training progress of DNN layers differs significantly: The front layers process general features and deep layers handle task-specific features.

A Potential Solution

 Intuition: We can freeze the front layers when they are converged, so that the backward pass and parameter sync can be skipped!

Outputs

training while maintain accuracy?

Challenge: How to accurately identify the freezable layers to accelerate

Learning From ML Research

- We turn to knowledge distillation (KD).
- KD: Using the difference of internal activation of layers compared to a trained teacher to train a student model by minimizing the distill. loss.
- Hard label (gradients) is not enough.
- Our goal is the same! (understanding a layer's training progress)

Similarity-Preserving Knowledge Distillation Tung etc., ICCV '19

Using a Reference Model in Training

- Egeria compares the training model's layer activation to a reference model (a **snapshot** of the training model) to understand the progress!
- One KD loss used in ML work is Similarity Preserving (SP) loss.
- We define a system metric **plasticity** as the negative and normalized SP loss.
- Low plasticity over time \rightarrow slow change.

Freezing Criteria & Hyperparameters

- would hurt the DNN accuracy.
- decisions.
- we can freeze these layers and move on.

• Freezing layers is a lossy training acceleration technique: Misfreezing

• We design an algorithm to analyze plasticity values and make freezing

The intuition is that if some layers' plasticity is no longer changing, then

 Hyperparameters: Evaluation frequency, thresholds of how small and how long. We use human expertise to set them for now. Not strict.

- System efficiency: Reference model and control plan are on CPUs.

Egeria Overview

• Accuracy: Freezing a layer when confident. Unfreezing & re-freezing.

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Avoid blocking GPU computation with asynchronous execution.

System Efficiency

Evaluation: TTA Speedup

• Baseline: Naive PyTorch. Single GPU and data parallelism.

Task	Model	Dataset	Accuracy target	# Servers × # GPUs/server	# Building layer modules	TTA speedup
Image classification	ResNet-50 [127]	ImageNet [<mark>166</mark>]	Top 1 75.9%	1×2 2×2 - 5×2	48 (residual blocks)	28% 27%-33%
	MobileNet V2 [167]		71.2%	1×2	17 (inverted residual blocks)	22%
	ResNet-56 [127]	CIFAR-10 [<mark>168</mark>]	92.1%	1×2	54 (residual blocks)	23%
Semantic segmentation	DeepLabv3 [169]	VOC [170]	mIoU 63.3%	1×2	49 (residual blocks and DeepLab head)	21%
Machine translation	Transformer-Base [72]	WMT16 EN-DE [171]	Perplexity 4.7	4×2 2×2 - 5×2	12 (6 encoders & 6 decoders)	43% 33%-43%
	Transformer-Tiny		53.3	1×8	4 (2 & 2)	19%
Question answering	BERT-Base [12] (fine-tuning)	SQuAD 1.0 [<mark>172</mark>]	F1 score 87.6	1×2	12 (Transformer blocks)	41%

Evaluation: Freezing Breakdown

Blanks are skipped layers.

How Egeria freezes and unfreezes layers during ResNet-56 training.

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Evaluation: Reference Model

Performance

Final accuracy CPU inference speed Reference acc. gap

Table 2. Using difference precisions for the reference model. EGERIA hits the sweet spot between efficiency and accuracy.

• A quantized reference model is accurate enough and faster on the CPU.

• The time overhead of reference model is only 1.5% of the overall time.

int8	float16	float32
92.1%	92.0%	92.2%
3.59×	1.69×	$1 \times$
-0.6%	-0.2%	0

Thank you!

- Egeria **accurately freezes the converged layers** and saves their computation and communication costs.
- It uses knowledge distillation and transfer learning techniques.
- We propose the training plasticity metric to quantify layers' training progress since different layers converge differently during training.
- It accelerates DL training by 19%-43% without sacrificing accuracy.

