
Egeria: Efficient DNN Training with 
Knowledge-Guided Layer Freezing

Yiding Wang, Decang Sun, Kai Chen (HKUST),  
Fan Lai, Mosharaf Chowdhury (University of Michigan)

￼1



Motivation
• Large models (#layers and #parameters) and datasets make DNN 

training time-consuming.


• An iteration of data-parallel training over a mini-batch of dataset 
includes:


1. Forward pass (light computation)


2. Backward pass (heavy computation)


3. Parameter synchronization (communication)
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Motivation
• Communication scheduling (ByteScheduler, SOSP ’19). Theoretically 

optimal.
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Motivation

• System optimizations (e.g., communication scheduling and pipeline 
parallelism) accelerate ML workload by making operations efficient (e.g., 
less idle GPU time).


• One more step: Can we further reduce the ML workload (with the same 
model quality) to accelerate training from the source?


• Reducing workload (lossy) should work together with existing (lossless) 
optimizations. 
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Motivation
• The training progress of DNN layers differs significantly: The front layers 

process general features and deep layers handle task-specific features.


• The front layers converge earlier than deep layers:
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How transferable are features in deep neural networks? 
Ghahramani etc., NeurIPS ’14. Image: PWCCA, Morcos etc.



A Potential Solution
• Intuition: We can freeze the front layers when they are converged, so 

that the backward pass and parameter sync can be skipped!


• Challenge: How to accurately identify the freezable layers to accelerate 
training while maintain accuracy?
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Skip BP

Inputs Outputs
We tried a gradient-

based method, but it 
causes accuracy loss.



Learning From ML Research
• We turn to knowledge distillation (KD).


• KD: Using the difference of internal 
activation of layers compared to a 
trained teacher to train a student 
model by minimizing the distill. loss. 


• Hard label (gradients) is not enough.


• Our goal is the same! (understanding 
a layer’s training progress)
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Using a Reference Model in Training
• Egeria compares the training model’s 

layer activation to a reference model 
(a snapshot of the training model) to 
understand the progress!


• One KD loss used in ML work is 
Similarity Preserving (SP) loss.


• We define a system metric plasticity as 
the negative and normalized SP loss. 


• Low plasticity over time -> slow change.
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Freezing Criteria & Hyperparameters
• Freezing layers is a lossy training acceleration technique: Misfreezing 

would hurt the DNN accuracy.


• We design an algorithm to analyze plasticity values and make freezing 
decisions.


• The intuition is that if some layers’ plasticity is no longer changing, then 
we can freeze these layers and move on.


• Hyperparameters: Evaluation frequency, thresholds of how small and 
how long. We use human expertise to set them for now. Not strict.
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Egeria Overview
• System efficiency: Reference model and control plan are on CPUs.


• Accuracy: Freezing a layer when confident. Unfreezing & re-freezing.
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System Efficiency
• Avoid blocking GPU computation with asynchronous execution.
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Evaluation: TTA Speedup
• Baseline: Naive PyTorch. Single GPU and data parallelism.
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Evaluation: Freezing Breakdown
• How Egeria freezes and unfreezes layers during ResNet-56 training. 

Blanks are skipped layers.
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Evaluation: Reference Model
• A quantized reference model is accurate enough and faster on the CPU.


• The time overhead of reference model is only 1.5% of the overall time.
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Thank you!

• Egeria accurately freezes the converged layers and saves their 
computation and communication costs. 


• It uses knowledge distillation and transfer learning techniques. 


• We propose the training plasticity metric to quantify layers' training 
progress since different layers converge differently during training. 


• It accelerates DL training by 19%-43% without sacrificing accuracy.
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