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Edge-cloud video analytics are ubiquitous

• Large scale deployment of cameras: traffic monitoring, event detection 

• Vehicles/robots with cameras: autonomous driving vehicles/robotics/drones

Object detection Semantic segmentation
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Video analytics for robotics are demanding

• Autonomous robotics applications 
heavily rely on video analytics: 

1. They require scene understanding 
capabilities for planning and control. 

2. They use high-frame-rate and high-
resolution video data. 

3. They require powerful DL models and 
computation resources for high 
inference accuracy and fast reaction.

Video source: Autopilot AI | Tesla
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https://www.tesla.com/autopilotAI


Example: delivery robots

• Small-sized electric vehicles. 

• A large scale deployment with low 
cost. 

• But during the COVID-19 lockdown 
when they are needed the most, “the 
technology is not ready at scale to 
deploy”, said by Nuro president.

Source: Delivery Robots Aren't Ready—When They Could Be Needed Most | WIRED
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https://www.wired.com/story/delivery-robots-arent-ready-when-needed-most/


Edge-cloud can help scale up video analytics

• Unlike auto. vehicles, delivery robots 
are budget and battery constrained. 

• Run the same demanding scene-
understanding DNN tasks. 

• A popular way: offload the heavy DL 
inference tasks to the cloud. 

• Trade-off: accuracy/data quality and 
latency/bandwidth
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Popular edge-cloud optimizations are limited

• To manage the trade-off between accuracy and bandwidth consumption: 

1. Frame filtering: only sending the interesting frames to the cloud 

2. Cropping: only sending the interesting regions to the cloud 

3. Harmless degradation: tuning the task-specific video knobs to balance 

• These techniques may not fit robotics applications because of the different 
requirements and they are not effective to improve tail accuracy.
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Filter and cropping may miss details
• Frame filtering is more 

suitable for stationary 
rather than moving cams.  
88%-94% of frames contain 
important objects. 

• Frame cropping may miss 
important details.  
For robotics applications, 
region-of-interest (ROI) is 
the full frame.
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Frame cropping



Tail accuracy

• More importantly, managing accuracy and bandwidth is not enough. 

• The tail performance means the worst performance, e.g., 90% or 95% tails 

• Accuracy (mIoU, mAP) does not reflect the worst performance. 

• 3-way trade-off: bandwidth v.s. accuracy v.s. tail accuracy 

• Class-wise tail accuracy and frame-wise tail accuracy
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Class-wise tail accuracy
• Quality reconstruction techniques can improve the mean accuracy, but does 

little help to the hard-to-identify classes. 

• “Tail classes” include motorcycles, bicycles, riders, traffic lights/signs, and 
buses.
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Frame-wise tail accuracy
• Unbalanced performance on degraded data over a temporal series of frames 

• This is caused by the hard-to-analyze, complex, and quality-sensitive frames.
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Our work Runespoor

• Goal: Achieving high accuracy and high tail accuracy under limited 
bandwidth for advanced video analytics tasks. 

1. We expose and define the important tail accuracy problem in edge-cloud 
video analytics. 

2. We propose Analytics-aware Super-Resolution (ASR) that fixes tail 
accuracy by focusing on detailed information reconstruction. 

3. We use Content-aware Adaptive Controller (CAC) that adapts to fast-
changing scenes with DL outputs in an end-to-end system.
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Analytics-aware Super-Resolution (ASR)
• Training a SR model uses a pair of high- and low-resolution images. 

• Analytics-aware training uses the DL inference model and labeled data. 

• Quality video for machine analytics, instead of human viewers.

 13



Content-aware Adaptive Controller (CAC) 
• CAC monitors the content and determines hard-to-analyze frames on the 

cloud, and adjusts the data rate on the edge. 

• Without ground truth, we profile the relation between the ratio of small 
regions and inference accuracy use it to detect “tail frames”.
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Evaluation
• Serving the latest CV models on high-quality datasets (~2K resolution, 17 fps) 

• Cityscapes for semantic segmentation and VisDrone for object detection 

• Downsampled by 2×-8× to save bandwidth with standard codecs.
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Higher accuracy for tail classes
• For 4× downsampled data, ASR can largely improve the inference accuracy of 

hard-to-label classes, compared to other recent image reconstruction works. 

• For 50%-100% classes (the worst 9/19), the improvement is > 20%.
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• For object 
detection, we can 
correctly detect 
more details 
(people, cars).
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Improve the most difficult frames
• For semantic segmentation, we improve the 90% and 99% accuracies by 

18%-22% and 35%-54%, compared to the latest ML-based technique.
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Overall accuracy and bandwidth saving
• For overall accuracy, we improve the overall accuracy by 1%-33% compared to 

the latest ML-based techniques. 

• To reach the same high accuracy (70% mIoU), Runespoor saves 2.1× and 6.9× 
bandwidth consumption compared to the latest streaming & analytics 
systems.
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End-to-end performance with CAC 
• Content-aware adaptive controller (CAC) detects the hard frames and 

improves the frame-wise tail performance under same bandwidth constraints.
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Summary

• To enable edge-cloud video analytics for robotics applications, tail accuracy is 
important in addition to overall accuracy and bandwidth consumption. 

• We propose Runespoor, an edge-cloud system to reconstruct degraded video 
on the cloud and ensure the online performance of system. 

• Analytics-aware Super-Resolution (ASR) improves the ML technique by 
focusing on detailed information reconstruction for analytics tasks. 

• Content-aware Adaptive Controller (CAC) reuses DNN inference results to 
adapt to fast-changing scenes with fine-grained data rate control.
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