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Edge-cloud video analytics are ubiquitous

e Large scale deployment of cameras: traffic monitoring, event detection

e Vehicles/robots with cameras: autonomous driving vehicles/robotics/drones
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Video analytics for robotics are demanding

e Autonomous robotics applications .
heavily rely on video analytics: Spuads 45 Rt
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2. They use high-frame-rate and high-
resolution video data.

3. They require powerful DL models and
computation resources for high
inference accuracy and fast reaction.

Video source: Autopilot Al | Tesla



https://www.tesla.com/autopilotAI

Example: delivery robots

e Small-sized electric vehicles.

o A large scale deployment with low
cost.

e But during the COVID-19 lockdown
when they are needed the most, “the
technology is not ready at scale to
deploy”, said by Nuro president.

Source: Delivery Robots Aren't Ready—When They Could Be Needed Most | WIRED
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https://www.wired.com/story/delivery-robots-arent-ready-when-needed-most/

Edge-cloud can help scale up video analytics

*g Edge only
e Unlike auto. vehicles, delivery robots O
are budget and battery constrained. Edge-
cloud
e Run the same demanding scene-
Devices

understanding DNN tasks.

e A popular way: offload the heavy DL

inference tasks to the cloud. E

e Trade-off: accuracy/data quality and

latency/bandwidth Inference

Edge results Cloud




Popular edge-cloud optimizations are limited

e To manage the trade-off between accuracy and bandwidth consumption:
1. Frame filtering: only sending the interesting frames to the cloud

2. Cropping: only sending the interesting regions to the cloud

3. Harmless degradation: tuning the task-specific video knobs to balance

e These techniques may not fit robotics applications because of the different
requirements and they are not effective to improve tail accuracy.



Filter and cropping may miss details

e Frame filtering is more
suitable for stationary
rather than moving cams.
88%-94% of frames contain
important objects.

e Frame cropping may miss
important details.
For robotics applications,
region-of-interest (ROI) is
the full frame.

Frame cropping



Tail accuracy

More importantly, managing accuracy and bandwidth is not enough.

The tail performance means the worst performance, e.g., 90% or 95% tails
Accuracy (mloU, mAP) does not reflect the worst performance.

3-way trade-off: bandwidth v.s. accuracy v.s. tail accuracy

Class-wise tail accuracy and frame-wise tail accuracy



Class-wise tail accuracy

e Quality reconstruction techniques can improve the mean accuracy, but does
little help to the hard-to-identify classes.

“Tail classes” include motorcycles, bicycles, riders, traffic lights/signs, and
buses.
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Frame-wise tail accuracy

e Unbalanced performance on degraded data over a temporal series of frames

e Thisis caused by the hard-to-analyze, complex, and quality-sensitive frames.
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Our work Runespoor

e Goal: Achieving high accuracy and high tail accuracy under limited
bandwidth for advanced video analytics tasks.

1. We expose and define the important tail accuracy problem in edge-cloud
video analytics.

2. We propose Analytics-aware Super-Resolution (ASR) that fixes tail
accuracy by focusing on detailed information reconstruction.

3. We use Content-aware Adaptive Controller (CAC) that adapts to fast-
changing scenes with DL outputs in an end-to-end system.
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Analytics-aware Super-Resolution (ASR)

e Training a SR model uses a pair of high- and low-resolution images.
e Analytics-aware training uses the DL inference model and labeled data.

e Quality video for machine analytics, instead of human viewers.
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Content-aware Adaptive Controller (CAC)

e CAC monitors the content and determines hard-to-analyze frames on the
cloud, and adjusts the data rate on the edge.

o Without ground truth, we profile the relation between the ratio of small
regions and inference accuracy use it to detect “tail frames”.
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Evaluation

e Serving the latest CV models on high-quality datasets (~2K resolution, 17 fps)

e Cityscapes for semantic segmentation and VisDrone for object detection

. Downsampled by 2x%-8Xx tosave bandwidth with standard codecs.
| e -~ . | =R Py ||
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Higher accuracy for tail classes

e For 4x downsampled data, ASR can largely improve the inference accuracy of

hard-to-label classes, compared to other recent image reconstruction works.

e For 50%-100% classes (the worst 9/19), the improvement is > 20%.
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mAP

e For object
detection, we can
correctly detect
more details
(people, cars).
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Improve the most difficult frames

e For semantic segmentation, we improve the 90% and 99% accuracies by
18%-22% and 35%-54%, compared to the latest ML-based technique.
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Overall accuracy and bandwidth saving

e For overall accuracy, we improve the overall accuracy by 1%-33% compared to
the latest ML-based techniques.

e To reach the same high accuracy (70% mloU), Runespoor saves 2.1x and 6.9x
bandwidth consumption compared to the latest streaming & analytics
systems.
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End-to-end performance with CAC

e Content-aware adaptive controller (CAC) detects the hard frames and
improves the frame-wise tail performance under same bandwidth constraints.

w T
=~ "
('_U o\o 30 - —>6—
< 5
s O 60- ;
C © ASR+CAC .
S5 4 ASR ; _
Q0o 5 | .
n S 20 AWStream+5R :CAC tail-specific
O 0 AWStream :configuration
al f T T T
0] E=ses==a==s ; --- Bandwidth limit ' ' T
5 8- | ASR+CAC |
%Tn\ : ASR/AWStream/AWStream+SR :
?8 o L N e e : |
O= 4- : |
— ~—~ |
c ' l
= 2 - e FL LT Cr P VY
0

i é Il’u éll é é % é SIJ 1IO 1I1 1|2 1|3 1|4 1|5 1|6 1|7 1|8 1|9 2IO
Time (second)
20



Summary

To enable edge-cloud video analytics for robotics applications, tail accuracy is
important in addition to overall accuracy and bandwidth consumption.

We propose Runespoor, an edge-cloud system to reconstruct degraded video
on the cloud and ensure the online performance of system.

Analytics-aware Super-Resolution (ASR) improves the ML technique by
focusing on detailed information reconstruction for analytics tasks.

Content-aware Adaptive Controller (CAC) reuses DNN inference results to
adapt to fast-changing scenes with fine-grained data rate control.
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