
1

Enabling Edge-Cloud Video Analytics for
Robotics Applications

Yiding Wang1, Weiyan Wang1, Duowen Liu1, Xin Jin2, Junchen Jiang3, Kai Chen1

1iSING Lab, Hong Kong University of Science and Technology
2Peking University 3University of Chicago

Abstract—Emerging deep learning-based video analytics tasks demand computation-intensive neural networks and powerful computing
resources on the cloud to achieve high accuracy. Due to the latency requirement and limited network bandwidth, edge-cloud systems
adaptively compress the data to strike a balance between overall analytics accuracy and bandwidth consumption. However, the degraded
data leads to another issue of poor tail accuracy, which means the extremely low accuracy of a few semantic classes and video frames.
Autonomous robotics applications especially value the tail accuracy performance but suffer using the prior edge-cloud systems. We
present Runespoor, an edge-cloud video analytics system to manage the tail accuracy and enable emerging robotics applications. We
train and deploy a super-resolution model tailored for the tail accuracy of analytics tasks on the server to significantly improves the
performance on hard-to-detect classes and sophisticated frames. During online operation, we use an adaptive data rate controller to
further improve the tail performance by instantly adjusting the data rate policy according to the video content. Our evaluation shows that
Runespoor improves class-wise tail accuracy by up to 300%, frame-wise 90%/99% tail accuracy by up to 22%/54%, and greatly improves
the overall accuracy and bandwidth trade-off.

Index Terms—Cloud Computing, Super Resolution, Video Analytics.

✦

1 INTRODUCTION

Deep learning-based video analytics applications are
flourishing and powering a growing number of traditionally
challenging applications for scene understanding. Such ap-
plications adopt computer vision (CV) techniques including
multiple object detection [1], semantic segmentation [2],
instance segmentation [3] and panoptic segmentation [4].
To obtain adequate inference accuracy, these tasks often
require (i) computation-intensive deep learning (DL) models,
(ii) powerful computation resources, and (iii) high-fidelity
data. Also, to enable responsive and high-precision robotics
applications such as autonomous vehicles and unmanned
aerial vehicles (UAVs), video data should have both a high
frame rate and high resolution.

Let us start with an example of robotics applications
that can benefit from edge-cloud computing: autonomous
delivery vehicles [5]. They are small-sized electric vehicles
and designed to be deployed on a large scale. But during
the COVID-19 lockdown when they are needed the most,
“the technology is not ready at scale to deploy”, said the
president of a leading startup, and the service fee could
be higher than delivery riders [6]. This is because unlike
high-end autonomous cars that install expensive hardware
to run complex DL inference locally [7], they are budget
and battery constrained [8]. They run at slower speeds
on sidewalks or bike lanes, and are monitored remotely
by operators via cellular video streams and intervened if
necessary [9], thus do not have a latency requirement as
stringent as high-end autonomous cars. Nevertheless, they
use the same fundamental technologies: autonomous deliv-
ery vehicles also heavily utilize cameras and deep neural
networks to understand the surroundings for planning and
control [10], [11]. Currently, autonomous delivery vehicles

run DL video inference locally as full-size cars, which could
raise some concerns for the future performance and scalability:
as they perform more challenging tasks, DL computation also
increases, so does the requirement for computation resources;
in the meantime, they still need to keep the compactness and
cost under budget to scale.

Off-loading the heavy DL inference tasks to the cloud
is a reasonable and promising solution: it can significantly
reduce the hardware requirements of edge devices, enable
these applications to be deployed at scale at a reasonable
cost, and reuse the bandwidth for remote monitoring. The
cloud (datacenters and edge clusters) has abundant compute
and network resources to provide high accuracy for fast
video analytics tasks [12], [13], [14], [15], [16]. However, the
downside of cloud is also apparent: the limited wide-area
bandwidth between the cloud and the edge could cause
long transmission delay [17] when streaming high-quality
video or inferior inference performance with low resolution
or frame rate. It is critical for autonomous delivery vehicles
to make decisions fluently and identify obstacles on the road
correctly. There is a trade-off between overall accuracy and
bandwidth consumption [17], [18], [19].

However, we find that managing this classic trade-off
is not sufficient to enable edge-cloud robotics applications
since it tends to cause poor tail accuracy in practice. Although
tuning degradation knobs (e.g., reducing video resolution)
can balance bandwidth consumption and overall accuracy
to some extent, it will also cause poor class-wise tail accuracy
(i.e., low accuracy of specific semantic classes like traffic
lights and motorcycles) and frame-wise tail accuracy (i.e., a
few frames with extremely low accuracy over a period of
time). This is because video data degradation will lead to the



2

loss of detailed information, thus hurt the accuracy of these
hard-to-detect small regions (e.g., traffic signs and riders
rather than sky and buildings) and sophisticated frames [20],
[21], which leads to poor tail accuracy. Issues caused by poor
tail accuracy, including the mislabeling of specific classes
and short periods of low accuracy inference, would hurt
real-world application performance and operations [22], [23].
However, in a conventional bandwidth-accuracy trade-off,
the overall accuracy cannot reflect the low tail accuracy,
because tail accuracy is covered by well-classified classes
which are robust to data degradation (class-wise) and by the
long periods of good operations (frame-wise) (§ 2.2).

Motivated by robotics applications, we argue that for such
edge-cloud video analytics systems, the real challenge is the
three-way trade-off between bandwidth consumption, overall
accuracy, and especially tail accuracy. Runespoor addresses
the tail accuracy challenge with two designs at both cloud
and edge: (i) analytics-aware super-resolution (ASR) and
(ii) content-aware adaptive controller (CAC).

Analytics-aware super-resolution extends super-
resolution (SR), which is an effective DL technique that
learns a mapping from low-resolution frames to high-
resolution frames. We use the DL models for CV tasks to
train ASR to reconstruct high-resolution frames tailored for
the tail accuracy performance of video analytics tasks with
augmented details from compressed low-resolution data
on the server. ASR explicitly considers the DL inference
performance in tail-related regions as the learning signals
in addition to the conventional reconstruction similarity
target (e.g., PSNR [24] and SSIM [25]) of SR. In this way,
ASR significantly improves the accuracy of detailed regions,
thus improves the accuracy of hard-to-detect classes and
sophisticated frames (§ 3.1).

Content-aware adaptive controller specifically improves
the inference accuracy of sophisticated frames that heavily
relies on detailed information by sending specialized higher-
resolution frames. In edge-cloud systems, reducing the data
rate regarding the bandwidth constraints leads to the loss
of detailed information. Moreover, the fast-changing scenes
in robotics applications make it challenging to detect and
fix tail accuracy during the online operation. Based on our
tail-aware offline profiling, CAC learns to detect the frames
that lead to low tail accuracy using the inference results of
CV tasks and instantly decides the data configuration for
subsequent frames to improve the frame-wise tail accuracy
without extra DL computation or network overhead (§ 3.2).

We implement and evaluate Runespoor on two CV tasks
for modern robotics applications: (i) road-driving semantic
segmentation and (ii) drone-view object detection. Our eval-
uation shows that Runespoor significantly outperforms prior
work on tail accuracy. Runespoor improves frame-wise 90%
and 99% accuracy by 18%-22% and 35%-54% for semantic
segmentation, respectively. Runespoor improves class-wise
50% to 100% accuracy averagely by 0.9%-79.4% for semantic
segmentation, and 14%-300% for object detection. Runespoor
with CAC is an efficient online end-to-end system that adapts
to real-world changing scenes. Runespoor also improves
overall accuracy and saves bandwidth consumption.

Our contributions are: (i) exposing and defining the im-
portant tail accuracy problem in edge-cloud video analytics;
(ii) analytics-aware super-resolution (ASR) that fixes tail

accuracy by focusing on detailed information reconstruction;
(iii) content-aware adaptive controller (CAC) that adapts
to fast-changing scenes with DL outputs in an end-to-end
system.

This paper extends an earlier version which has been
published in IEEE INFOCOM 2021 [26].

2 MOTIVATION

Runespoor is motivated by video analytics tasks for emerging
robotics CV applications, e.g., autonomous delivery robots
and UAVs. They use fresh videos and are deployed on
a large scale in complex scenes. They are equipped with
high-definition cameras and require scene understanding
capabilities for planning and control. They require pow-
erful DL models, computation resources, and high-quality
data [27] to ensure high inference accuracy and fast reaction.
Due to limited computation resources at the edge, many
applications send videos to the cloud to run heavy DL
inference tasks [12], [17], [18]. State-of-the-art video analytics
systems work efficiently on general tasks, but are limited for
our target applications (§ 2.4).

We find that although current video degradation tech-
niques in edge-cloud analytics systems (e.g., AWStream [17]
and NAS [28]) can reduce the bandwidth consumption
and maintain a relatively high overall inference accuracy,
e.g., mIoU (mean of intersection over union) for semantic
segmentation and mAP (mean average precision) for object
detection, they cannot fix the poor tail accuracy issue, which is
caused by data degradation and the requirement of detailed
information in CV tasks, as further explained in § 2.2.

2.1 What is tail accuracy?

We conduct preliminary evaluations on data reconstruction
methods in previous edge-cloud video analytics systems and
find that the tail accuracy has two forms: (i) class-wise tail
accuracy and (ii) frame-wise tail accuracy.

Class-wise tail accuracy refers to the huge accuracy loss
of some semantic classes in the scene understanding DL
inference tasks for scene understanding (e.g., semantic
segmentation and object detection) on degraded data.

Let us illustrate class-wise tail accuracy with an example:
under bandwidth constraints, the edge device (e.g., an
autonomous delivery robot) sends downsampled 512×256
frames (from Cityscapes [27] validation set) to the cloud for
semantic segmentation inference. Before inference, to fit the
input resolution of the DL model, frames are upsampled to
the original 2048×1024 resolution by (i) Bilinear algorithm
and (ii) the state-of-the-art SR model [29]. Bilinear algorithm
is the default upsampling method in major ML frameworks
(e.g., TensorFlow and PyTorch [30]). SR proves useful in video
systems [28], [31], [32]. In Figure 1, the class-wise accuracy
is normalized to the fraction of the inference accuracy on
original high-resolution frames, because we want to compare
the accuracy loss caused by data degradation.

As expected in Figure 1, upsampling the compressed
frames achieves higher inference accuracy with the same
received data and bandwidth consumption. What is more,
there exists significant class-wise accuracy inequality on all
three series. The accuracies of classes like road, wall, sky,



3

motorcyclepole

traffic 
signbus

sidewalk

vegetationroad
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
cla

ss
-w

ise
 n

or
m

al
ize

d 
m

Io
U

Low-resolution (LR)

mean LR
normalized LR

train
fence truck

person car sky
0.5

0.6

0.7

0.8

0.9

1.0

1.1
Bilinear (default)

mean bilinear
normalized bilinear

traffic 
light

rider
bicycle

terrain
building wall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10
Super-resolution (SR)

mean SR
normalized SR

Fig. 1: Normalized semantic segmentation class-wise accuracy after compression. The normalization baseline is the accuracy
on the original data. Bilinear (mid) and super-resolution (right) still obtain degraded tail accuracy, although they improve
overall accuracy. Subfigures have different Y-axises. The 19 X-axis class labels are printed in Round-Robin for space limitation.
(Complete ordered labels please see Figure 9.)

and buildings are higher than the overall accuracy (mIoU,
three red lines) and close to 1, which means almost no loss
on degraded data. However, other classes (e.g., motorcycles,
bicycles, riders, traffic lights/signs, and buses) suffer from
much more accuracy loss. Overall accuracy (e.g., mIoU and
mAP) does not reflect the huge accuracy loss of those classes
(tail), because most regions and classes are robust to the video
resolution degradation (e.g., sky, road, cars, and buildings).

Frame-wise tail accuracy refers to the extremely low tail
accuracy over a temporal series of video frames in inference
tasks. Emerging applications such as autonomous vehicles
require fluent decision-making. Every frame matters for such
applications, but some frames suffer from more accuracy
loss on degraded data. Figure 2 uses the same setting as
Figure 1. It shows the accuracy distribution of frames that are
processed by Bilinear algorithm and the standard analytics-
agnostic SR model. The accuracy of the hardest frames
(90% and 99% accuracy) can be 19% to 37% worse than the
mean accuracy of frames. The accuracy distribution indicates
that during a period of operation, some frames can suffer
from significantly low accuracy, which is not pleasant for
applications. However, the overall accuracy of all frames
over a long period of time cannot capture the tail accuracy.

2.2 Why does tail accuracy exist?

The fundamental cause of the poor tail accuracy is that the
detailed information, including small regions/objects and
boundaries, is more sensitive to the degraded input data
(downsampled frames) in DL inference tasks. The smaller
or the lower resolution a region is, the harder it is to detect
its semantic label by a neural network [33], as shown in the
evaluation of class-wise inference accuracy and region size
in Table 2. This is why scene understanding applications
require high-resolution videos to ensure high accuracy. This
has been well discussed in the CV community [20], [21], but
ignored in designing edge-cloud systems for video analytics.

10
-fr

am
e 

m
Io

U

30

40

50

60

70

80

CDF (%)
0 20 40 60 80 100

standard SR bilinear mean standard SR mean bilinear

Fig. 2: Frame-wise accuracy distribution (averaged on ev-
ery 10 frames). Using SR does substantially improve the
overall accuracy over Bilinear (two horizontal lines), but
they both suffer from poor tail accuracy (the highlighted 90+
percentiles).

As shown in Figure 1, upsampling low-resolution frames
does improve the overall accuracy, and even achieves 94%
of the best mIoU results with SR. However, the accuracy of
those tail classes are still not satisfactory because they are
generally small and sensitive to detailed quality loss.

The same reason also causes frame-wise tail accuracy.
During a time series of video frames of moving robotics
applications, the content of the video scenes constantly shifts,
unlike fixed traffic cameras [18]. On the frames that are
sensitive to detailed information, the inference accuracy of
those classes will drop drastically on degraded data, and the
frame-wise accuracy will drop accordingly. Naturally, the tail
frames occur when the scene changes. The worst frames are
not frequent, but they lead to poor tail accuracy performance.



4

2.3 Why does tail accuracy matter?
The tail accuracy issue would result in two problems in real-
world scenarios: (i) Class-wise tail accuracy would harm the
accuracy of some important classes, which are critical to the
application performance. (ii) Frame-wise tail accuracy would
hurt fluent decision-making and impair operations.

Class-wise tail accuracy is an important issue because
those most affected classes are usually critical to robotics ap-
plications. The importance of an object often appears in small
sizes in videos in practice [22]. For example, autonomous
vehicles should pay more attention to the regions that are
closely related to driving safety than those that are not crucial
for vehicle operation. In other words, the system should focus
on major obstacles/risks (e.g., pedestrians, riders, vehicles,
and bicycles) and traffic information (e.g., traffic signs/lights).
It does not need to pay the same attention to processing less
critical regions such as the sky, vegetation, and buildings. It
would be very dangerous to mis-detect a person or rider in
the scene. In Figure 1, it is clear that some of the tail classes
are more important for applications.

Frame-wise tail accuracy in a time series of frames is
critical to robotics applications for two reasons. First, the
operation of autonomous systems relies on the DL inference
results of scene understanding CV tasks [10]. Robotics
applications require correct DL inference to support the
following decision-making. It is important to avoid extremely
low tail accuracy on degraded data in edge-cloud systems.
Second, the impact of tail accuracy would be magnified and
significant for the overall service quality during a long time
of operation and under a large-scale deployment.

2.4 Missing pieces in prior work
We argue that the real challenge for such edge-cloud video
analytics systems is to handle the three-way trade-off be-
tween bandwidth consumption, overall accuracy, and tail
accuracy, as shown in Figure 1. Let us review how prior work
handles this challenge.

1) Skipping non-relevant and stale frames at the edge
can reduce the bandwidth and computation load for
fixed cameras with many similar frames [18], [19], [34].
However, robotics applications require a fast reaction
within the stopping distance to the constantly changing
traffic conditions [7]. We analyze our video datasets and
find that 88%-94% of frames are essential to applications:
they contain vehicles, people, traffic signs and actively
change. So the room for saving bandwidth by skipping
frames is limited here.

2) Splitting the CV model to both the edge and the cloud
and only sending the intermediate CNN output of
partial layers to the cloud [35], [36] can reduce the
bandwidth consumption, compared to sending raw
videos. This method uses the computation resource
of edge devices to save bandwidth. However, robotics
applications require complex CNN models on powerful
hardware to provide high inference accuracy. Con-
strained edge devices can only run cheaper models to
extract features, which may not achieve the best accuracy.
For example, for semantic segmentation, using the edge-
friendly MobileNetV3_Small [37] as the backbone takes
only 1% computation of the heavy Xception-71 [38], but

loses 14% accuracy [39], which is crucial for demanding
applications. Also, the rapid development of CNN
often causes backbone architectures to change, which
will break the edge-cloud splitting configuration [40].
We do not dispute the work on the edge and DL
accelerators [41], but present a new design considering
these limitations.

3) The systems using compression/downsampling [17] and
quality recovery with SR [28], [32] reduce the bandwidth
consumption with acceptable overall accuracy, and
utilize the computation resource on the cloud. However,
such data degradation methods lead to the tail accuracy
issue.

system
design

3 requirements of edge-cloud systems
tail

accuracy
overall

accuracy bandwidth

resolution
compression [17], [28] no yes yes

edge-cloud
splitting [35], [36] yes no yes

stale frame
skipping [18], [19], [34] yes yes no

high-quality video
(baseline only) yes yes no

Runespoor yes yes yes

TABLE 1: The three requirements of edge-cloud video
analytics for robotics applications.

3 DESIGN

Runespoor is an edge-cloud video analytics framework
especially for robotics applications. We propose two major
components: analytics-aware SR (ASR) and content-aware
adaptive controller (CAC). Figure 3 illustrates the workflow
of Runespoor. The edge device adaptively compresses the
video captured by the high-definition camera with CAC and
streams it to the cloud server via the network. On the server,
it first reconstructs the received data with ASR, then runs DL
inference for CV tasks. CAC uses the DL inference results for
the edge-side data rate control.

3.1 Analytics-aware super-resolution
Inspired by applying SR in video systems [28], [31], [32], we
find that SR can be an effective method to strike a balance
between bandwidth consumption and overall inference
accuracy, however the tail accuracy issue still remains (§ 2.4).
An SR model trained on the same datasets as the vision
analytics tasks (NAS [28]) is naturally an enhancement for
downsampling-based systems (e.g., AWStream [17]) and a
strong baseline.

To address the three-way trade-off between bandwidth
consumption, overall accuracy, and tail accuracy, especially
the limitations of video compression techniques that lead to
the poor tail accuracy issue (§ 2.2), Runespoor uses analytics-
aware SR (ASR), which focuses on detailed information
reconstruction for analytics tasks. ASR improves the DL
inference accuracy on reconstructed frames, especially on
the small regions and objects that are quality-sensitive to be
correctly detected.



5

camera frame

encoding

down-

sample

content-aware

adaptive

controller

low-res

frames

analytics- 
aware SR

DL inference

vision model

network/

app info

edge cloud

Fig. 3: Runespoor framework overview. The two design
components are cloud-side ASR and edge-side CAC.

To train ASR, we first train a base SR model using the
dataset for CV tasks (e.g., semantic segmentation and object
detection), then use the analytics-aware loss function to fine-
tune the SR model to improve the DL inference accuracy.
We use this two-step arrangement instead of training from
scratch because of the different nature of SR and DL tasks.
First, data labeling is prohibitively labor-intensive [42], thus
Cityscapes dataset only labels 1 out of 30 frames. Analytics-
aware training requires data annotation for DL tasks, while
the base SR training can use much more unlabeled frames
besides the training dataset. Second, it allows us to apply
different training techniques. For example, SR and DL tasks
both use randomly cropping as data augmentation for
generalization [43]. We can use small patches (64×64) for
the base SR training to reconstruct small details, and large
patches (720×720) for analytics-aware fine-tuning to identify
regions of any scale to improve the training quality.

The key design of ASR is the analytics-aware loss function
that maximizes tail accuracy. Equation 1 illustrates its general
idea. 𝑙𝑠 denotes the structural similarity loss function, which
measures the frame reconstruction quality and stabilizes loss
convergence. NAS [28] only uses 𝑙𝑠 to train the standard
SR. 𝑙𝑎 denotes the task analytics loss, which measures the
accuracy of DL inference tasks. ℎ𝑟 and 𝑙𝑟 are the original high-
resolution and downsampled low-resolution frames from the
same datasets for training video analytics tasks. asr_model
is the ASR model to train. inf_model denotes the video
analytics model, which is pre-trained on high-resolution
datasets for CV tasks. Runespoor uses SR as a pluggable
module in the application workflow and does not require
any customization on inf_model for generality in the real-
world deployment. We compute gradients of the loss function
on both asr_model and inf_model whose parameters are
frozen. 𝛼 and 𝛽 are weight parameters. Through experiments,
we recommend a larger 𝛼 for robust convergence. In this way,
we utilize the powerful inf_model architecture to make
asr_model analytics-aware.

loss = 𝛼·𝑙𝑠 (asr_model(𝑙𝑟), ℎ𝑟)+
𝛽·𝑙𝑎 (asr_model, inf_model, 𝑙𝑟).

(1)

We compare three potential designs of ASR and Equa-
tion 1, and explain the rationale behind ASR.

1) Train the SR model from scratch with the analytics-aware
loss function (the standard way).

2) Train a base SR model, then fine-tune it with the
analytics-aware loss to minimize the difference between
inference results of post-SR and HR frames (similar to
CloudSeg [31]).

3) Train a base SR model, then fine-tune it with the
analytics-aware loss to minimize the final analytics error
on detailed regions (our choice).

We find the first method that applying the analytics-
aware loss at the beginning of ASR training is not an
efficient way because of the different nature of SR and DL
tasks. First, analytics-aware training requires data annotation
for DL tasks, while the standard SR training needs no
annotation (illustrated in Figure 4 and 6). Data labeling is
prohibitively labor-intensive and time-consuming [23], [42],
thus the Cityscapes dataset only labels 1 out of 30 frames.
Standard SR training can use more easy-to-get unlabeled
frames. Second, they use different training techniques. For
example, SR and DL tasks both use randomly cropping as
data augmentation for adaptability and generalization [43].
Training SR uses small patches (e.g., 64×64) to reconstruct
small details. The scene understanding DL models are trained
with large patches (e.g., 720×720) to identify regions of
any scale. In ASR joint training, feeding the small patches
produced by the SR model to the DL task model cannot
obtain meaningful semantic results.

To implement Equation 1, another alternative method is
using 𝑙𝑎 to minimize the difference between the inference
results of ℎ𝑟 and reconstructed 𝑙𝑟 , as shown in Equation 2 and
Figure 4. CloudSeg [31], which is a preliminary exploration
of SR for video analytics, uses this method. Its rationale is
treating HR (and the inference results on HR) as the target,
which is intuitively inherited from the traditional SR training.
We find this method inefficient, because a well-trained DL
model for CV tasks can still make wrong predictions and
brings inaccurate supervisory signals to the analytics-aware
loss and affects asr_model. Figure 5 is an extreme example.
Figure 5a is a sophisticated frame. Its inference accuracy is
only 42.09% mIoU (Figure 5d) with HR data, which makes
it a tail frame. It achieves only 5%-25% mIoU on tail classes
like motorcycles, riders, and buses. We reconstruct this frame
from ×4 downsampled data using the ASR trained with
Equation 2. The output is Figure 5b, which gives a failed
inference result as Figure 5e. This method limits the accuracy
performance (evaluated in § 5.1.1), and even makes tail
accuracy worse by augmenting false predictions, as we find
in evaluations.

loss = 𝛼·𝑙𝑠 (asr_model(𝑙𝑟), ℎ𝑟)+
𝛽·𝑙𝑎 (inf_model(asr_model(𝑙𝑟)), inf_model(ℎ𝑟)).

(2)

Instead of the CloudSeg method, to minimize tail ac-
curacy, we use the classification error of the DL inference
tasks on small regions as the analytics loss 𝑙𝑎, as shown in
Equation 3 and Figure 6. We bring the label of the analytics
tasks to ASR training, which CloudSeg does not utilize.
More importantly, 𝑙𝑎 (e.g., cross entropy loss for semantic
segmentation) in Equation 3 concentrates on the loss signals
from small/detailed regions instead of the whole frame to
improve tail accuracy by targeting the root cause (§ 2.2). We
select small or detailed (dtl.) regions by the relative size
of a region to the frame. The threshold is different for each



6

prediction

similarity loss

analytics-

aware SR

DL inference

model

HR

SR
LR

prediction on SR

similarity

loss

analytics-aware 

loss

prediction on HR

Fig. 4: Using inference results on HR as target (Equation 2).

(a) HR (b) reconstructed frame

(c) label (d) HR prediction (e) worse prediction

Fig. 5: An extreme example shows that training ASR with
Equation 2 may hurt tail accuracy.

dataset. As a result, the large and stable areas like the sky
are not considered in 𝑙𝑎.

loss = 𝛼·𝑙𝑠 (asr_model(𝑙𝑟), ℎ𝑟)+
𝛽·𝑙𝑎 (inf_model(asr_model(𝑙𝑟))dtl., labeldtl.).

(3)

analytics-

aware SR

DL inference 
model

similarity

loss

detailed 

analytics loss

analytics-aware 

loss

HR

SR
LR

prediction on SR

label

Fig. 6: We use DL inference results of detailed regions as the
analytics-aware optimization targets (Equation 3).

To summarize the full design of ASR, we first train the
standard SR model with a large volume of unannotated
data, then fine-tune it with task-specific labeled data and the
analytics-aware loss function (Equation 3) that focuses on the
DL inference results of detailed regions so that it can handle
the low tail accuracy issue on degraded data in edge-cloud
systems. ASR models are deployed on the server, improving
the resolution of the received compressed data and feeding
processed frames to the DL analytics model.

3.2 Content-aware adaptive controller
Towards the bandwidth constraint in the online operation of
edge-cloud systems, conventional wisdom [17], [44] suggests
three knobs to adjust data rate: resolution, frame rate, and

encoding quality and use a data rate controller to adapt
to network conditions. For example, AWStream [17] learns
the knob configurations for tasks by offline profiling and
periodically updates the controller to handle model drift (less
efficiency when the environment changes) by online profiling.
Its online profiling works as steps 1 to 3 in Figure 7: (i) peri-
odically profiling the current DL inference performance with
extra raw data, and (ii) updating the data rate strategy, to
(iii) make the corresponding adjustments in video knobs.

However, we find that for video analytics in robotics
applications, the conventional data rate controller [17] is
incapable of handling the tail accuracy issue. First, the
conventional controller learns the data rate policy for a
dataset of similar scenes under varying bandwidth con-
straints. Its design goal is to handle network changes instead
of frequent scene changes. Thus it does not detect and react
to the few frames that lead to low tail accuracy (§ 2.2).
Second, periodically online profiling (step 1) requires extra
bandwidth consumption (to send raw data as a reference)
and DL computation (for baseline accuracy). Thus it takes
tens of seconds for AWStream [17] to react to significant scene
changes only like camera movement. Such a slow process
cannot catch “tail frames” in robotics applications because
the newly-updated policy has already become stale.

We observe that the video analytics performance is highly
related to the semantic content of the video. If a frame
contains fewer small regions or objects, then it is more likely
to become a tail frame because the accuracy of hard-to-detect
classes is easily affected by wrong predictions, as illustrated
in Figure 8. In addition, video analytics applications also have
significant content correlations [45], [46]. Easy-to-analyze
frames or tail frames typically appear as a sequence because
of their similar contents.

Considering these two issues and our observation, we
propose content-aware adaptive controller (CAC) to use the
video analytics results to instantly detect the frames that
could lead to extremely low accuracy on degraded data (“tail
frames”) and apply specialized video knobs configurations
to improve tail accuracy. Figure 7 shows the workflow of
CAC. Two key designs of CAC are: (i) tail frame detection with
scene understanding predictions; and (ii) tail-aware offline
profiling to obtain tail-specific data rate configurations.

ASR & inf. model

online profiling content-aware 
adaptive controller

②update policy

③video data①tail frame 
detecting

cloud edgecontent-aware

control flow

base

control flow

⑥updated video data
⑤decide new data rate

④

system action

Fig. 7: Online workflow of content-aware adaptive controller
(CAC). Steps 4 to 6 are content-aware. Steps 1 to 3 follow
AWStream [17].

Tail frame detection requires a low latency and a high
recall rate to catch all potential tail frames in fast changing
environments. Lower precision, i.e., mis-detecting simple
frames as tail frames, will not hurt the final accuracy because
simple frames are quality-robust for DL tasks (§ 2.2) under
the same bandwidth constraint, as evaluated in § 5.3. We use
a threshold of the ratio of small regions to detect tail frames:
checking the DL inference result (e.g., semantic segmentation)



7

of a frame, if the size ratio of all small regions in the frame
is below the threshold, we consider it very likely to be a tail
frame, based on our previous observation and experiments.
CAC applies specialized data configurations to send the
subsequent frames to improve the DL inference accuracy of
these tail frames. The small region here is defined the same
as in Equation 3.

Finding this threshold is done together with tail-aware
offline profiling. For generalization, we use a linear regression
model to determine the threshold for tail frame detection
using the DL profiling results of a dataset. The threshold we
obtain for the Cityscapes dataset is 1%. We analyze the tail
frame detection results on the Cityscapes validation dataset
in Figure 8. The accuracy (mIoU) is calculated per frame, thus
lower than the cumulative overall accuracy. The red crosses
depict 95% to 100% tail accuracy. Using the 1% threshold of
the ratio of small regions to detect tail frames, the recall rate
is over 90%, which means we can catch almost all tail frames.
The precision is between 25% and 35% on three scales, but
we do not require high precision. By utilizing DL inference
results of analytics tasks, the online computation overhead
of CAC is finding small regions by depth-first search on
downsampled prediction maps (segmentation) or directly
adding small bounding boxes (detection), which takes <1ms
(unnoticeable) per frame. The detection is accurate even with
low-resolution (8×) frames.

0.0

22.5

45.0

67.5

90.0

ratio of small regions (%)
0.0 1.5 3.0 4.5 6.0

0.0

22.5

45.0

67.5

90.0

0.0 1.5 3.0 4.5 6.0

pe
r-f

ra
m

e 
m

Io
U

 (%
)

0.0

22.5

45.0

67.5

90.0

0.0 1.5 3.0 4.5 6.0

2× 8×4×

Fig. 8: Using a 1% threshold of small region ratio catches tail
frames with a high recall rate. 8× is the lowest resolution.

Tail-aware offline profiling in CAC extends prior work
AWStream [17] to optimize tail accuracy. For a CV task,
offline profiling on the training dataset with different knobs
(resolutions and encoding qualities) processed by ASR will
find the best data rate configurations for high accuracy
regarding different bandwidth constraints. We separate
offline profiling to find (i) the tail-specific knob configurations
on frames with 90% to 100% accuracy (tail frames) and (ii)
the standard configurations on the rest of the dataset. As
discussed before, tail frames need a higher resolution to be
correctly detected. The tail-specific configurations we obtain
have a higher resolution, lower encoding quality, and the
same data size. This is because tuning encoding quality
within a range can reduce the data rate without hurting
accuracy [17], [44]. This brings a significant tail accuracy
improvement and almost no loss for other frames. Offline
profiling is a one-time process, which takes tens of minutes
for the Cityscapes dataset with dozens of configurations.

In summary, CAC in Figure 7 works as follows. At the
server, in addition to periodically online profiling as AW-
Stream (steps 1 to 3) for standard performance monitoring,
CAC gathers the video analytics results to detect tail frames

(step 4). If tail frames are detected, CAC will adaptively
apply a specialized data configuration (step 5) learned at
the tail-aware offline profiling. At the edge, CAC instantly
(∼500ms, § 5.3) applies the specialized configurations for
the subsequent similar frames (step 6) to improve tail
accuracy, compared with ∼10s of AWStream. During the
online operation, CAC will adjust data rate configurations
according to the video content, video analytics and network
performance. CAC requires no extra DL computation and
raw data to obtain accuracy baselines online, and has the
same offline profiling workload as AWStream.

4 IMPLEMENTATION

Framework. We implement the end-to-end Runespoor proto-
type as Figure 3. We build video frames and control messages
transmission with ZeroMQ [47] between edge and cloud,
and DL inference with PyTorch [30] at the cloud. To achieve
real-time video analytics, we use per-frame inference [48], and
implement CV and encoding operations (e.g., downsampling)
with OpenCV. Multiple ASR models are loaded via Flask at
the cloud for different resolutions of received data. ASR mod-
els are not memory-consuming comparing with DL inference
models. We build two applications which are widely used in
real-world autonomous systems [49]: semantic segmentation
and object detection.

Dataset. We implement semantic segmentation on the urban
road driving dataset Cityscapes [27], and object detection
on the drone-view dataset VisDrone2019 [50]. They are
both scene understanding tasks for real-world autonomous
robotics applications [49] and demand accuracy performance.

Cityscapes dataset consists of 8-bit RGB video frames
in 2048×1024 resolution and a 17 fps frame rate, which are
captured by the front camera of vehicles driving in the cities.
It contains 2975 training frames, 500 validation frames, and
more unlabeled video clips which are used in ASR training
and CAC evaluation.

VisDrone2019 image dataset consists of frames collected
by drones, mostly in cities, and the resolution is up to
2000×1500. We use 1000 high-quality frames with a minimum
resolution of 1920×1080 to provide high inference accuracy,
especially for small objects. They are split into 700 and 300
images for ASR training and object detection evaluation,
respectively.

To evaluate the DL inference accuracy, we use standard
metrics: intersection over union (IoU) for semantic seg-
mentation, and average precision (AP) for object detection.
Regarding the bandwidth constraints, CAC adaptively sends
compressed video frames, and ASR processes the frames for
inference. The video knobs include resolution, frame rate,
and encoding quality.

Training ASR and CAC. We implement ASR with Py-
Torch [30] based on CARN [29], which is an efficient SR
architecture. The base ASR model (CARN) is not exclusive. To
train the base SR models (§ 3.1), we use the training datasets
plus unlabeled frames. The base training uses standard
techniques including image patches (64×64) by randomly
cropping and flipping, and the default L1 loss function to
evaluate the difference between post-SR and HR images.
After the base training, we get a set of SR models as a strong



8

baseline of NAS [28] for the trade-off between bandwidth
consumption and overall accuracy.

We use SwiftNet [2] and YOLOv3 [1] to implement
our analytics-aware training for semantic segmentation and
object detection, respectively. The CV models are also not
exclusive. We choose these two because they both consume
high-resolution data to achieve state-of-the-art inference
accuracy in real-time (§ 5.3). We use the model weights
provided by authoritative implementations [51], [52] which
are pre-trained on the target datasets. They will not be
modified in ASR training.

The input to SwiftNet is in 2048×1024, and YOLOv3 input
is set to 832×832 to exploit the high-resolution data. To train
ASR with the analytics-aware loss function (Equation 3), we
set 𝛼 and 𝛽 to 0.95/0.05 and 0.9/0.1 through experiments.
For semantic segmentation, we use cross entropy as the
analytics loss 𝑙𝑎. For object detection, the analytics loss 𝑙𝑎
includes cross entropy and focal loss [53], which calculates
the classification and bounding-box location error.

To find the standard and tail-specific knob configurations
in CAC, offline profiling includes resolutions from ×2 to
×8, JPEG encoding quality from 40 to 90, and processed
by ASR regarding different bandwidth targets. Usually, tail-
specific configurations have one level higher of resolution.
We use depth-first search (DFS) to find small regions on
downsampled prediction maps of scene understanding
models, which is accurate and gives no noticeable overhead.

5 EVALUATION

We show the evaluation results of Runespoor from:
§ 5.1 Runespoor handles both class-wise and frame-wise tail

accuracy. ASR improves 50% to 100% class-wise accuracy
by up to 300%, and frame-wise 90% and 99% accuracy
by up to 22% and 54%, respectively.

§ 5.2 For the traditional goal of edge-cloud analytics systems,
ASR reduces bandwidth consumption and also improves
overall inference accuracy.

§ 5.3 During online operation, CAC instantly reacts to the hard-
to-detect and complex frames and further improves tail
accuracy. The end-to-end Runespoor system is efficient.

5.1 Tail accuracy improvements

Edge-cloud video analytics systems send compressed data
to save bandwidth but lead to low tail accuracy. We compare
ASR of Runespoor with three baselines which improve
the accuracy of scene understanding DL inference tasks:
(i) Bilinear algorithm (used in AWStream [17]) and (ii) the
standard SR model (used in NAS [28]). (iii) CloudSeg [31]
described in § 3.1. Bilinear is the default image resizing
algorithm of PyTorch [30]. The standard SR models are
well trained and achieve their optimal performance in
PSNR [24], which shows the reconstruction performance
to keep similarity. We compare with CloudSeg, a previous
version of this work, which only focuses on the overall
accuracy of semantic segmentation and is not an end-to-end
system, on class-wise tail accuracy of segmentation. As a
reference, we show the DL inference results on the original
high-resolution data. The original resolution of Cityscapes
validation dataset for semantic segmentation is 2048×1024

(HR), and ×2 means 1024×512 and so on. The VisDrone
validation dataset has original frames in 1920×1080 and
2000×1500.

5.1.1 Class-wise tail accuracy

Figure 9 shows the class-wise DL inference results break-
down when receiving 512×256 (×4) frames for semantic
segmentation, using three baselines and ASR. The per-class
accuracy is normalized to the HR inference accuracy. ASR
improves explicitly the accuracy of those semantic classes
that perform poorly on degraded data, e.g., motorcycles,
riders, buses, and fences, while CloudSeg [31] shows lit-
tle or even negative improvements. Some classes having
normalized accuracies that are higher than 100% (which
is equivalent to ASR having higher accuracies than HR
in Table 2) are reasonable. It is because (1) training ASR
essentially employs larger DNN architectures of SR plus
the powerful segmentation model and more iterations on
labeled data, making ASR a data augmentation method to the
video analytics tasks; and (2) ASR improves under-trained
classes (which seldom appear in the dataset like fence and
motorcycle) in the pre-trained CV model whose accuracies
are already low with HR. With Runespoor, all 19 classes
achieve higher accuracy than the overall accuracy of other
baselines (right). This shows that ASR is effective to fix the
poor class-wise tail accuracy issue.

In detail, we compare with prior work on the average
of 50% to 100% class-wise tail accuracy, which includes
the worst 9 classes (“tail classes”) out of 19 in Figure 9.
Table 2 shows the tail accuracy breakdown of semantic
segmentation. Comparing with the standard SR (NAS [28]),
Runespoor exceeds on the average of 50% to 100% class-wise
tail accuracy by 8.4% (from 61.73% to 66.92%), which is larger
than the overall accuracy improvement (5.5% from 71.15%
to 75.04%). Comparing with the default Bilinear algorithm
(AWStream [17]), Runespoor exceeds on the average of 50%
to 100% class-wise tail accuracy by 23.7% (from 54.11%
to 66.92%), which is also larger than the overall improve-
ment(13.9%). While CloudSeg [31] generally improves the
accuracy, it is not always effective on tail accuracy and
sometimes even makes some classes worse.

class IoU(%) Bilinear standard SR CloudSeg ASR HR size(%)

train 45.45 58.12 68.95 70.41 70.41 0.11
fence 41.83 50.09 55.49 61.12 56.20 0.82

motorcycle 45.96 53.38 53.22 59.02 58.44 0.08
traffic light 54.54 63.80 63.82 65.01 67.65 0.20

rider 47.34 51.64 52.87 55.96 58.28 0.22
bus 70.69 76.71 78.33 82.66 85.17 0.39
pole 52.73 59.05 60.54 61.24 62.91 1.48

bicycle 63.57 70.78 70.23 72.25 75.77 0.71
traffic sign 64.91 71.96 71.84 74.60 76.95 0.67

tail classes 54.11 61.73 62.72 66.92 68.30 4.68
normalized 0.79 0.90 0.92 0.98 1.00 in total

overall mIoU(%) 65.87 71.15 72.46 75.04 75.35 —

TABLE 2: Class-wise tail accuracy breakdown at ×4 of
semantic segmentation. ASR largely improves the class-wise
tail accuracy performance comparing with prior work.

ASR of Runespoor works for all resolution inputs, es-
pecially for those experiencing more accuracy loss. Table 3



9

cl
as

s-
w

is
e 

no
rm

al
ize

d 
m

Io
U

0.00

0.20

0.40

0.60

0.80

1.00

1.20

motorcy
cle tra

in

tra
ffic li

ght
pole

fen
ce rid

er

tra
ffic s

ign
tru

ck
bicy

cle bus
pers

on
ter

rain

sid
ew

alk car

building

veg
eta

tio
n sky wall road

normalized bilinear normalized standard SR normalized CloudSeg normalized ASR

mean

Fig. 9: ASR effectively improves the class-wise tail accuracy, and has the lowest standard deviation with a higher mean
accuracy.

shows that comparing with Bilinear and the standard SR,
ASR improves the average of 50% to 100% class-wise
tail accuracy by 4.5%/0.9%, 23.7%/8.4%, 58.2%/20.3% and
79.4%/65.9% respectively on ×2, ×4, ×6 and ×8 compressed
inputs. These results show that Runespoor can effectively
manage the low class-wise tail accuracy issue in edge-cloud
systems, which is important to the operation of robotics
applications.

mIoU(%) tail classes overall

HR 2048×1024 68.30 75.35

×2
1024×512

bilinear 64.60 73.11
standard SR 66.91 74.66

ASR 67.52 75.12

×4
512×256

bilinear 54.11 65.87
standard SR 61.73 71.15

ASR 66.92 75.04

×6
341×170

bilinear 38.17 53.13
standard SR 54.77 65.14

ASR 61.24 70.81

×8
256×128

bilinear 25.36 40.49
standard SR 27.42 45.40

ASR 45.50 60.32

TABLE 3: Overall and class-wise tail accuracy of all scales for
semantic segmentation.

We report the class-wise tail accuracy performance of
object detection in Figure 10. ASR of Runespoor beats the two
baselines at ×2 and ×4 inputs and obtains good performance
compared with original data. The 50% to 100% tail classes
of the VisDrone dataset include tricycles, bicycles, awning-
tricycles, motors, and people, which are all small and hard
to detect in the view of drones. ASR improves the class-wise
tail accuracy of object detection by 14% to 300%, and overall
accuracy by 11% to 140%. Let us take a close look. In this
task, ×4 downsampled data hurts the accuracy significantly.
For example, accuracy (mAP) of tricycles detection on ×4
data with the standard SR only achieves 10% normalized
accuracy. Impressively, ASR improves it to 91%. Figure 11
shows results on a real complex frame; Figure 12 enlarges the
parking and pedestrian areas to show more details. We can
see that the frame reconstruction of ASR which focuses on

the detailed information lets the DL inference model detect
the compact parked cars (left) and people on the street (right)
much more accurately than the standard SR.

m
AP

0

0.1

0.2

0.3

0.4

0.5

HR bilinear std. SR ASR

0.381
0.334

0.254

0.416 0.430
0.389

0.324

0.451

overall mAP tail mAP

(a) ×2 downsampling

m
AP

0

0.1

0.2

0.3

0.4

0.5

HR bilinear std. SR ASR

0.263

0.070.065

0.337

0.406

0.1820.169

0.451

overall mAP tail mAP

(b) ×4 downsampling

Fig. 10: Average 50% to 100% class-wise tail accuracy of the
object detection task. ASR improves class-wise tail accuracy
especially on ×4 downsampled input.

5.1.2 Frame-wise tail accuracy

Mitigating high-percentile accuracy over time is important to
the responsiveness and operation of robotics applications, as
discussed in § 2. In this part, we show that ASR of Runespoor
can improve temporal frame-wise tail accuracy comparing
with the standard SR in semantic segmentation. We show
the 90% and 99% accuracy on the Cityscapes validation
dataset of 500 frames for semantic segmentation in Figure 13.
Each data point is an average accuracy on an episode of 10
frames. The horizontal lines for mean mIoU are different
from the overall mIoU in Figure 9 because the overall mIoU
is accumulated on the whole dataset (i.e., 500-frame mIoU),
while the mean mIoU in Figure 13 is the average accuracy of
all frame episodes.

Figure 13 shows the frame-wise accuracy distribution
with ×4 and ×6 inputs for semantic segmentation. ASR
improves all frames in general, especially the tail ones with
low accuracy (more obvious in Figure 13a), thanks to its focus
on detailed information. Table 4 shows the tail accuracy in
detail. ASR improves 90% accuracy by 18% to 22%, and 99%
accuracy by 35% to 54% comparing with the standard SR
(NAS).



10

(a) Standard SR

(b) ASR

Fig. 11: Object detection on ×4 inputs. The detector finds
more details on post-ASR frames.

Fig. 12: Enlarged details of object detection on ×4 downsam-
pling with standard SR (top) and ASR frames (down).

5.2 Overall accuracy and bandwidth saving

As we focus on the tail accuracy performance, ASR naturally
improves the overall accuracy at the same bandwidth con-
sumption, which is also important for edge-cloud systems.

Table 5 compares the overall accuracy of semantic
segmentation across these schemes. We can see that ASR
improves the overall accuracy by 3% to 49% compared
with Bilinear algorithm (AWStream [17]) and 1% to 33%
compared with the standard SR (NAS [28]). Figure 14 shows
the semantic segmentation accuracy-bandwidth comparison
of Runespoor, NAS, and AWStream. From a bandwidth
saving perspective, to achieve the optimal overall accuracy

10
-fr

am
e 

m
Io

U

30

40

50

60

70

80

CDF (%)
0 20 40 60 80 100

std. SR ASR
mean std. SR mean ASR

(a) ×4 downsampling

10
-fr

am
e 

m
Io

U

30

40

50

60

70

80

CDF (%)
0 20 40 60 80 100

std. SR ASR
mean std. SR mean ASR

(b) ×6 downsampling

Fig. 13: Frame-wise accuracy distribution of semantic seg-
mentation. ASR especially improves tail accuracy perfor-
mance.

10-frame mIoU(%) 90% 99% mean

×4
512×256

standard SR 49.01 37.93 60.29
ASR 57.83 54.03 63.88

×6
341×170

standard SR 44.75 34.86 55.93
ASR 54.51 46.92 60.58

TABLE 4: 90% and 99% frame-wise tail accuracy for semantic
segmentation.

(75% mIoU), ASR outperforms NAS by 3.5× and AWStream
by 14.3×. To achieve 70% mIoU, ASR can still save 2.1× and
6.9× bandwidth consumption comparing with prior work.

scale metric Bilinear standard SR ASR HR

×2
mIoU(%) 73.11 74.66 75.12 75.35

PSNR 36.72 40.13 39.91 —SSIM 0.981 0.991 0.989

×4
mIoU(%) 65.87 71.15 75.04 75.35

PSNR 31.79 35.34 35.06 —SSIM 0.946 0.972 0.968

×6
mIoU(%) 53.13 65.14 70.81 75.35

PSNR 29.34 33.30 32.75 —SSIM 0.917 0.955 0.950

×8
mIoU(%) 40.49 45.40 60.32 75.35

PSNR 27.81 30.62 30.57 —SSIM 0.897 0.929 0.924

TABLE 5: Overall accuracy comparison for semantic seg-
mentation. Runespoor achieves higher accuracy than other
baselines while exhibiting similar visual quality.

To show the image reconstruction quality, we use PSNR
(peak signal-to-noise ratio) [24] and SSIM (structural simi-
larity index) [25]. A higher PSNR or SSIM shows that the
reconstructed images are more close to the original ones. In
Table 5, ASR shows a slightly lower reconstruction quality
compared with the standard SR, because the standard SR is
trained only towards the similarity target, while ASR is not.
We design ASR to sacrifice some image quality (e.g., clouds
in the sky) for higher DL inference accuracy on those details
that are critical to the tail accuracy performance.

For the object detection task, Runespoor also achieves a
better accuracy-bandwidth performance. In Table 6 (same
mAP data as in Figure 10), ASR improves the overall
accuracy by 33% to 140% comparing with the bilinear



11

O
ve

ra
ll 

m
Io

U
 (%

)

20

40

60

80

Bandwidth consumption (Mbps)
0.1 1 10

Bilinear (AWStream) Standard SR (NAS) ASR (Runespoor)

Fig. 14: Accuracy and bandwidth consumption at a same
high-quality encoding. X-axis is in log scale. Runespoor
achieves higher accuracy with the same bandwidth.

algorithm (AWStream [17]), and 11% to 123% compared
with the standard SR (NAS [28]), at ×2 and ×4 (bandwidth)
respectively. To achieve a high object detection accuracy
(0.4 mAP), Runespoor saves 3.4× bandwidth consumption
than the standard SR. The PSNR and SSIM metrics on the
VisDrone dataset show the same results as the Cityscapes
dataset.

scale metric bilinear standard SR ASR HR

×2
mAP 0.324 0.389 0.430 0.451
PSNR 26.75 28.54 28.16 —SSIM 0.849 0.893 0.882

×4
mAP 0.169 0.182 0.406 0.451
PSNR 24.52 25.04 24.54 —SSIM 0.772 0.784 0.767

TABLE 6: Overall performance comparison for object de-
tection. Runespoor achieves higher accuracy than other
baselines especially on ×4 downsampled data.

5.3 End-to-end performance with CAC
Content-aware adaptive controller (CAC) works in the
online operation of edge-cloud video analytics of robotics
applications. We use a Linux desktop as the edge device and
a local server with 4 NVIDIA K40m GPUs as the cloud. We
use the Linux tc utility to modify the outgoing bandwidth
of the edge device to emulate the edge-cloud environment.
Cityscapes dataset only labels 1 frame in every 30 frames (1.8s
video clip) because annotation is costly, so does VisDrone,
as discussed in § 3.1. We choose the Cityscapes dataset to
evaluate CAC for its diversity of scenes. To simulate the
real-world online operation, we use a consecutive 20-second
17-fps unlabeled video clip (340 frames) to evaluate CAC on
frame-wise tail accuracy handling. We use the DL predictions
on original HR as the baseline to evaluate the relative frame-
wise accuracy. We process the baseline and mark the ignored
areas to make it in Cityscapes label format. We also mark the
ignored areas (black area in Figure 5c like the vehicle itself)
in this evaluation to make it more accurate. Figure 15 shows
the average relative accuracy of every second.

We initially set the outgoing bandwidth to 10 Mbps
(2048×1024, 17 fps, 90 encoding quality), which is an abun-
dant 4G uploading bandwidth [54]. There are four stages in

0

20

40

60

80

100

Pe
r-s

ec
on

d 
re

la
tiv

e
ac

cu
ra

cy
 (%

)

CAC tail-specific
configuration

ASR+CAC
ASR
AWStream+SR
AWStream

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (second)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

bp
s)

Bandwidth limit
ASR+CAC
ASR/AWStream/AWStream+SR

Fig. 15: CAC improves tail accuracy in the real-world video
stream. Accuracy is relative to performance on HR.

our evaluation: (i) before t=5s, we set the bandwidth to 10
Mbps; (ii) at t=5s, we limit the bandwidth to 5 Mbps, which is
typical for uploading; (iii) at t=12s, we reduce the bandwidth
to 2 Mbps; (iv) at t=19s, we reset the bandwidth to 10 Mbps.
During 14s to 16s, the frames that lead to low tail accuracy
occur.

Figure 15 shows that CAC takes ∼500ms of latency to de-
tect and switch to the tail-specific knob configuration (higher
resolution and lower encoding quality) for the subsequent
frames, comparing with the ∼10 seconds of delay to detect
scene changes in AWStream [17]. At around t=15s, Runespoor
with CAC achieves a higher tail accuracy than ASR only. At
t=17s, CAC switches back to the standard configuration.
CAC, including the tail-specific configuration (14s-16s), has a
similar throughput as other baselines, as shown in the lower
figure. This is because we learn these configs through offline
profiling regarding the same bandwidth targets, as discussed
in § 3.2.

We show the breakdown of end-to-end latency per frame
in Table 7. Each application has 410-530ms and 330-420ms
latency. DL computations are distributed over multiple GPUs.
Runespoor is efficient to support our target applications.
Note that CloudSeg [31] only implements an SR model and
has no end-to-end implementation.

time
(ms)

transmission+processing ASR inference×2 ×4 ×6 ×8

segmentation 144 40 20 14 68-80 316

detection 133 37 — — 66-70 220

TABLE 7: Breakdown of end-to-end latency per frame.

6 RELATED WORK

6.1 Edge-cloud video analytics systems
In many real-time video analytics applications, it is funda-
mentally challenging to co-locate expensive computation
resources with high-fidelity video data due to scalability,
cost, and energy restrictions. With more edge devices being



12

deployed in geographically distributed locations, it is difficult
to send the videos collected at the edge to the cloud for
analytics under limited bandwidth.

A common approach is to reduce the video quality at the
edge, e.g., via pixel-level (spatial) and frame-level (temporal)
downsampling. The degradation must ensure that sufficient
information is retained so that the cloud can run video
analytics on downsampled videos to produce sufficiently
accurate results. For example, AWStream [17] learns the
Pareto-optimal policy for a task, and adaptively selects a
video degradation strategy to achieve the best accuracy at
the given WAN bandwidth. DDS [55] designs an iterative
workflow driven by the server-side DNN feedback to stream
the video. It can react to the real-time inference results
by sending the low-quality video first then encoding the
feedback regions in a higher quality. It achieves a better
bandwidth-accuracy trade-off and lower end-to-end delay.

FilterForward [18], along with other filter-based frame-
works [19], [34], selectively filters video frames at the
edge with a small neural network to reduce bandwidth
consumption. The insight is that for fixed-view surveillance
applications, there are a lot of non-relevant frames that can
be skipped in DL video analytics. Reducto [46] dynamically
adapts its filtering decisions to the changing features and
video content.

Neurosurgeon [35] and Split-Brain [36] split the DL
computation between the edge and the cloud: they process
the frames at the edge and only send the output of partial
CNN layers (features) to reduce the bandwidth consumption
compared with sending raw videos. Prior work [56] also
studies the cloud offloading policy for edge devices to
improve the analytics accuracy and the focus is still edge
computing. Brainwave [41] and DeepCPU [57] focus on
efficient DNN accelerators.

6.2 Super-resolution for video analytics

Our ASR is based on the recent advancements in super-
resolution techniques. SR reconstructs a high-resolution
image from a low-resolution image, by inferring details based
on information in the LR image. Recently, CNN-based SR
models have significantly improved the performance [29].

Prior work in both system and CV has shown that SR
is a promising approach to improving video streaming
quality [28] and analytics accuracy [31], [32], [58] when only
low-resolution videos are available. NAS [28] trains content-
aware SR models and deploys them on the client device to
improve the video streaming QoE with limited bandwidth.
NAS uses scalable DNN [59] of SR which can take multiple
input resolutions regarding resource restrictions because it is
deployed at the client instead of the cloud server. However,
directly applying NAS to video analytics systems does not
address the tail accuracy issue (§ 2.4).

6.3 Robust performance in CV/ML

Achieving robust edge-cloud video analytics performance
motivates Runespoor because this is critical to real-world
applications (§ 2). There are many related works in the
CV/ML community on the tail accuracy issue, or generally
on the robust performance.

For frame-wise performance, stability training [60] stabi-
lizes the CV model against small input distortions to enable
a higher performance on noisy visual data. An adversarial
network approach [61] trains the model with the adversarial
noise using a generative network (GAN) to stabilize the
performance. ACE [23] synthesizes new data (e.g., winter and
dawn) to train semantic segmentation to adapt to changing
environments over time.

For class-wise performance, IAL [22] introduces the notion
of class importance for autonomous driving and trains
an importance-aware semantic segmentation model that
favors the accuracy of some important classes. WBA [62]
acknowledges the class-wise imbalanced distribution includ-
ing importance and rareness. They propose an evaluation
framework and an accuracy metric that to manage the
arbitrary skews in class cardinalities and importances. Note
that comparing with prior CV/ML work addressing the tail
accuracy or robustness issue, Runespoor does not modify or
retrain the backend CV inference model for generality.

6.4 Networking systems for machine perception

Runespoor aims for better analytics performance, rather than
high quality in human perception. Today a large proportion
of videos are consumed by computers for analytics instead
of being watched by human. There is a growing trend to
treat machine perception as a key design factor in edge-cloud
video analytics systems. Task-aware encoding [40] explores
specialized video encoding schemes for high inference
accuracy with reinforcement learning. DeepN-JPEG [63]
explores image compression methods that are favored by
image recognition tasks.

7 CONCLUSION

For modern edge-cloud video analytics applications, the
tail accuracy performance is critical but often ignored when
handling the bandwidth consumption and overall accuracy
trade-off. We propose Runespoor to enable demanding appli-
cations (e.g., autonomous robotics vehicles) to take advantage
of the cloud and conduct advanced video analytics efficiently
with edge-cloud computing. Runespoor improves tail ac-
curacy with analytics-aware SR (ASR) to reconstruct detailed
information from compressed data, and content-aware adaptive
controller (CAC) to instantly adapt to fast-changing scenes.
Evaluations show that Runespoor successfully manages the
trade-off between bandwidth consumption, overall and tail
accuracy.

Acknowledgement: This work is supported in part by the
Hong Kong RGC TRS T41-603/20-R and GRF-16215119 and
GRF-16213621. Kai Chen is the corresponding author of this
paper.

REFERENCES

[1] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-
ment,” arXiv Preprint arXiv:1804.02767, 2018.

[2] M. Orsic, I. Kreso, P. Bevandic, and S. Segvic, “In defense
of pre-trained imagenet architectures for real-time semantic
segmentation of road-driving images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
12 607–12 616.



13

[3] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun,
“MultiNet: Real-time joint semantic reasoning for autonomous
driving,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2018, pp. 1013–1020.

[4] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic
segmentation,” arXiv Preprint arXiv:1801.00868, 2018.

[5] M. Simon and A. Pardes. (2019) The prime challenges for Scout,
Amazon’s new delivery robot - WIRED. [Online]. Available: https:
//www.wired.com/story/amazon-new-delivery-robot-scout/

[6] A. Marshall. (2020) Delivery robots aren’t ready when they could
be needed most - WIRED. [Online]. Available: https://www.wired.
com/story/delivery-robots-arent-ready-when-needed-most/

[7] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and
J. Mars, “The architectural implications of autonomous driving:
Constraints and acceleration,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2018, pp. 751–766.

[8] J. Condliffe. (2018) Why sidewalk delivery robots still
need safety drivers - MIT Technology Review. [Online].
Available: https://www.technologyreview.com/f/610107/
why-sidewalk-delivery-robots-still-need-safety-drivers-too/

[9] I. Boudwayn. (2020) Delivery robot operators are also
working from home - Bloomberg. [Online]. Available:
https://www.bloomberg.com/news/articles/2020-05-13/
delivery-robot-operators-are-also-working-from-home

[10] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik,
J. Terwilliger, J. Kindelsberger, L. Ding, S. Seaman et al., “MIT
autonomous vehicle technology study: Large-scale deep learning
based analysis of driver behavior and interaction with automation,”
arXiv Preprint arXiv:1711.06976, 2017.

[11] M. Burns. (2019) “Anyone relying on lidar
is doomed,” Elon Musk says - TechCrunch.
[Online]. Available: https://techcrunch.com/2019/04/22/
anyone-relying-on-lidar-is-doomed-elon-musk-says/

[12] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman, “Live video analytics at scale
with approximation and delay-tolerance.” in NSDI, vol. 9, 2017,
p. 1.

[13] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large
video datasets with low latency and low cost,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 269–286.

[14] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose,
A. Krishnamurthy, and R. Sundaram, “Nexus: A gpu cluster engine
for accelerating dnn-based video analysis,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, 2019, pp.
322–337.

[15] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan, and
Y. Wang, “Aeolus: A building block for proactive transport in
datacenters,” in Proceedings of the 2020 Conference of the ACM Special
Interest Group on Data Communication, 2020, pp. 422–434.

[16] J. Zhang, W. Bai, and K. Chen, “Enabling ecn for datacenter
networks with rtt variations,” in Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies,
2019.

[17] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A.
Lee, “AWStream: Adaptive wide-area streaming analytics,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 2018, pp. 236–252.

[18] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen,
M. Kaminsky, and S. R. Dulloor, “Scaling video analytics on
constrained edge nodes,” in 2nd Conference on Systems and Machine
Learning (SysML), 2019.

[19] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and
H. Balakrishnan, “Glimpse: Continuous, real-time object
recognition on mobile devices,” in Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2015, pp.
155–168.

[20] H. Ding, X. Jiang, A. Q. Liu, N. M. Thalmann, and G. Wang,
“Boundary-aware feature propagation for scene segmentation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 6819–6829.

[21] S. Zhao, Y. Wang, Z. Yang, and D. Cai, “Region mutual information
loss for semantic segmentation,” in Advances in Neural Information
Processing Systems, 2019, pp. 11 115–11 125.

[22] B. Chen, C. Gong, and J. Yang, “Importance-aware semantic
segmentation for autonomous vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 1, pp. 137–148, 2018.

[23] Z. Wu, X. Wang, J. E. Gonzalez, T. Goldstein, and L. S. Davis, “ACE:
Adapting to changing environments for semantic segmentation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[24] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,”
in 2010 20th International Conference on Pattern Recognition. IEEE,
2010, pp. 2366–2369.

[25] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: From error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[26] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotic applications,” in IEEE
INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021.

[27] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 3213–3223.

[28] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive
content-aware internet video delivery,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018, pp.
645–661.

[29] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight
super-resolution with cascading residual network,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
252–268.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in PyTorch,” 2017.

[31] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the
edge-cloud barrier for real-time advanced vision analytics,” in 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19),
2019.

[32] D. Dai, Y. Wang, Y. Chen, and L. Van Gool, “Is image super-
resolution helpful for other vision tasks?” in Applications of
Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE,
2016, pp. 1–9.

[33] D. Guo, L. Zhu, Y. Lu, H. Yu, and S. Wang, “Small object sensitive
segmentation of urban street scene with spatial adjacency between
object classes,” IEEE Transactions on Image Processing, vol. 28, no. 6,
pp. 2643–2653, 2018.

[34] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee,
“The design and implementation of a wireless video surveillance
system,” in Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, 2015, pp. 426–438.

[35] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[36] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the dnn black-box:
Video analytics with dnns across the camera-cloud boundary,”
in Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges, 2019, pp. 27–32.

[37] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
MobileNetV3,” arXiv Preprint arXiv:1905.02244, 2019.

[38] F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1251–1258.

[39] TensorFlow, “TensorFlow DeepLab Model Zoo,” https:
//github.com/tensorflow/models/blob/master/research/
deeplab/g3doc/model_zoo.md.

[40] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti,
“Neural networks meet physical networks: Distributed inference
between edge devices and the cloud,” in Proceedings of the 17th
ACM Workshop on Hot Topics in Networks. ACM, 2018, pp. 50–56.

[41] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A
configurable cloud-scale DNN processor for real-time AI,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 1–14.

https://www.wired.com/story/amazon-new-delivery-robot-scout/
https://www.wired.com/story/amazon-new-delivery-robot-scout/
https://www.wired.com/story/delivery-robots-arent-ready-when-needed-most/
https://www.wired.com/story/delivery-robots-arent-ready-when-needed-most/
https://www.technologyreview.com/f/610107/why-sidewalk-delivery-robots-still-need-safety-drivers-too/
https://www.technologyreview.com/f/610107/why-sidewalk-delivery-robots-still-need-safety-drivers-too/
https://www.bloomberg.com/news/articles/2020-05-13/delivery-robot-operators-are-also-working-from-home
https://www.bloomberg.com/news/articles/2020-05-13/delivery-robot-operators-are-also-working-from-home
https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/
https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-elon-musk-says/
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md


14

[42] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: A database and web-based tool for image annotation,”
International Journal of Computer Vision, vol. 77, no. 1-3, pp. 157–173,
2008.

[43] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1,
p. 60, 2019.

[44] P. M. Grulich and F. Nawab, “Collaborative edge and cloud neural
networks for real-time video processing,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 2046–2049, 2018.

[45] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video
analytics on large camera networks,” in 2020 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 2020, pp. 110–124.

[46] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and
R. Netravali, “Reducto: On-camera filtering for resource-efficient
real-time video analytics,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 359–376.

[47] “Zeromq,” https://zeromq.org/, 2020.
[48] Y. Liu, C. Shen, C. Yu, and J. Wang, “Efficient semantic

video segmentation with per-frame inference,” arXiv Preprint
arXiv:2002.11433, 2020.

[49] Autopilot Tesla. [Online]. Available: https://www.tesla.com/
autopilotAI

[50] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu, “Vision meets drones:
A challenge,” arXiv Preprint arXiv:1804.07437, 2018.

[51] M. Orsic, “SwiftNet,” https://github.com/orsic/swiftnet, 2019.
[52] P. Zhang, “SlimYOLOv3,” https://github.com/PengyiZhang/

SlimYOLOv3, 2019.
[53] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss

for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[54] “USA Mobile Network Experience Report, July 2019,”
https://www.opensignal.com/reports/2019/07/usa/
mobile-network-experience, 2019.

[55] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann,
and J. Jiang, “Server-driven video streaming for deep learning
inference,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 557–570.

[56] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang,
E. Pergament, E. Cidon, S. Katti, and M. Pavone, “Network
offloading policies for cloud robotics: A learning-based approach,”
arXiv Preprint arXiv:1902.05703, 2019.

[57] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “DeepCPU: Serving
rnn-based deep learning models 10x faster,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 951–965.

[58] M. Haris, G. Shakhnarovich, and N. Ukita, “Task-driven super
resolution: Object detection in low-resolution images,” arXiv
Preprint arXiv:1803.11316, 2018.

[59] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive
neural networks for efficient inference,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 527–536.

[60] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving
the robustness of deep neural networks via stability training,”
in Proceedings of the ieee conference on computer vision and pattern
recognition, 2016, pp. 4480–4488.

[61] H. Wang and C.-N. Yu, “A direct approach to robust deep learning
using adversarial networks,” arXiv Preprint arXiv:1905.09591, 2019.

[62] A. Gupta, N. Tatbul, R. Marcus, S. Zhou, I. Lee, and J. Gottschlich,
“Class-weighted evaluation metrics for imbalanced data
classification,” arXiv preprint arXiv:2010.05995, 2020.

[63] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan,
“DeepN-JPEG: A deep neural network favorable jpeg-based image
compression framework,” in Proceedings of the 55th Annual Design
Automation Conference. ACM, 2018, pp. 1–6.

Yiding Wang is currently a Ph.D. candidate
from the Department of Computer Science
and Engineering, the Hong Kong University of
Science and Technology. He received the B.E.
degree in instrument science from Shanghai
Jiao Tong University in 2017. His research
interests include improving the performance
of machine learning systems using machine
learning techniques.

Weiyan Wang is currently a Ph.D. candidate
from the Department of Computer Science
and Engineering, the Hong Kong University of
Science, advised by Prof. Kai Chen. Before that,
he received the M.Phil. degree on Computer
Software and Theory from Institution of
Software, Chinese Academy of Sciences
and the B.Eng. degree in Computer Science
and Technology from Huazhong University of
Science and Technology.

Duowen Liu is a research postgraduate
student supervised by Prof. Kai Chen from
the Hong Kong University of Science and
Technology. He received his M.Phil. and
Bachelor’s degree both in Computer science
in 2021 and 2017 respectively. His research
interests include machine learning systems and
data center networking.

Xin Jin is an Associate Professor in the Depart-
ment of Computer Science and Technology at
Peking University. His research is in computer
systems, with a focus on hardware-software co-
design, programmable networks and machine
learning systems. Before joining Peking
University, he was a Postdoctoral Researcher at
UC Berkeley, and was an Assistant Professor at
Johns Hopkins University. He received his BS
in computer science and BA in economics from
Peking University in 2011, and his MA and PhD

in computer science from Princeton University in 2013 and 2016.

Junchen Jiang is currently an Assistant
Professor at the University of Chicago. He
received his PhD degree from the Computer
Science Department at Carnegie Mellon
University in 2017. Before that, he received
Bachelor degree in Computer Science from
Yao Class at Tsinghua University in 2011. His
research applies state-of-the-art machine
learning techniques to drastically improve
the performance and reliability of large-scale
networked systems.

Kai Chen is an Associate Professor with
Department of Computer Science and Engi-
neering, Hong Kong University of Science and
Technology, Hong Kong. He received his Ph.D.
degree in Computer Science from Northwestern
University, Evanston, IL, USA in 2012. His
current research interests include data center
networking, machine learning systems and
privacy-preserving computing.

https://zeromq.org/
https://www.tesla.com/autopilotAI
https://www.tesla.com/autopilotAI
https://github.com/orsic/swiftnet
https://github.com/PengyiZhang/SlimYOLOv3
https://github.com/PengyiZhang/SlimYOLOv3
https://www.opensignal.com/reports/2019/07/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/07/usa/mobile-network-experience

	Introduction
	Motivation
	What is tail accuracy?
	Why does tail accuracy exist?
	Why does tail accuracy matter?
	Missing pieces in prior work

	Design
	Analytics-aware super-resolution
	Content-aware adaptive controller

	Implementation
	Evaluation
	Tail accuracy improvements
	Class-wise tail accuracy
	Frame-wise tail accuracy

	Overall accuracy and bandwidth saving
	End-to-end performance with CAC

	Related Work
	Edge-cloud video analytics systems
	Super-resolution for video analytics
	Robust performance in CV/ML
	Networking systems for machine perception

	Conclusion
	References
	Biographies
	Yiding Wang
	Weiyan Wang
	Duowen Liu
	Xin Jin
	Junchen Jiang
	Kai Chen


