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Background
• Scope: Transformer-based 

discriminative models, rather 
than generative models.


• Classification and regression 
tasks, e.g., sentiment analysis.


• Popular: 25 out of the 30 most 
downloaded models on 
Huggingface are BERT-like 
encoder-only models.
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BERT-like and GPT-like Models

• BERT-like models consist of 
Transformer encoders.


• Input: text -> encoding 
representation -> predictions


• Work similar to traditional DNNs 
like CNN for image classification.
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BERT-like GPT-like

Structure Encoder-
only

Decoder-
only

Task Prediction Generation

Output All at once Token by 
token

#Params 300 million 
- 1 billion

1.5 - 175 
billions



Language Models Scale-Up Fast

• For a few % of SOTA accuracy, 
they are adding a lot of 
parameters and latency.


• Example: from DistilBERT to 
RoBERTa-Large, 7% acc.✅,  
4× latency❌, 5× #params❌.


• The accuracy return of adding 
parameters is diminishing.
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How Current Inference Systems Work
• Model-less: The system 

selects the model to serve a 
task (rather than by hand).


• Key module: Model selection. 
Because the real cost is 
running the selected model.


• Idea: One best config for all 
queries of a task workload.


• Cocktail (NSDI ’22) works 
similarly: ensemble vs. single.
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Image by the courtesy of INFaaS (Romero etc., ATC ’21).



Overheads of Inference Systems
• Model-less inference systems select 

models at the application level: One 
model for all.


• Observation: A natural dataset is a 
mixture of simple and difficult queries.


• Resource overheads for LMs:  
A much smaller model with slightly 
lower accuracy won’t get selected.


• Only select LLMs for demanding tasks.
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Design of Tabi
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Run small DNN only; 
Get softmax outputs, 
attention weights, and 
calibrated confidence.

Return or 
dispatch query 

with a probability.

Run LLM faster; 
Get softmax 

outputs.

Attention-based 
word pruning.

 (§4.2)

Query Outputs

return

re-
route

confi-
dence

attention weights

Weighted dual 
ensemble.  (§4.3)

softmax 
outputs

softmax 
outputs

return

 (§4.1)



Confidence-Based Early Return
• Calibrated confidence 

(Temperature scaling)


• 50%-70% queries do 
not even invoke LLM.


• Same overall accuracy.


• Reduce the average 
latency by up to 40%.


• Tail latency?
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Attention-Based Word Pruning

• Transformer-based language models 
build on the attention mechanism.


• Some tokens are more important.


• Longer sentences take more time.  
Time complexity: O(n2).


• We prune re-routed query texts to 
accelerate LLM inference by ~15%.
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Setting System Hyperparameters
• Tabi-aware offline profiling: In addition to the accuracy and latency of 

available models, we also profile various hyperparameters and model 
pairings. We use early-stop techniques to limited the overheads.
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Controller

Worker

Model-1 
process

Repository

Model store

Model-2 
process

Model-n 
process

App 
queries 

with 
targets

Returned 
DNN 

results

Candidate 
metadata

Multi-level 
inf. engine

Tabi-aware 
offline profiling

Model 
selection

Inf. ctrl. 
logic



Evaluation: Average Latency
• GLUE benchmark and similar classification tasks. Single GPU.


• Over 20% of average latency reduction compared to INFaaS (ATC ’21).
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Same 
accuracy

10%+ improvement compared to a recent baseline 
Cocktail (NSDI ’22)



Evaluation: Tail Latency
• Similar tail accuracy: 

Attention-based word pruning 
offsets the overhead of the 
extra small-model level.


• For different tasks, the early-
return rate is different. Higher 
speed-up for simpler tasks.


• A task is easy means the 
accuracy gap between a large 
and a small LM is smaller.
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Easier Harder



Evaluation: System Hyperparameters
• We set online hyperparameters 

through offline profiling.


• Dispatcher’s cut-off threshold (top 
fig.): A higher value -> re-routing 
more queries to the large model.


• Attention pruning scale: A higher 
value -> more words are pruned, 
e.g., 4%, 14%, 63% in SST-2.


• Meet acc. target & reduce latency.
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Evaluation: Other ML Optimizations
• Tabi (w/ vanilla models) performs 

similarly to early-exit DNN, in spite 
of the system overhead.


• Because we have multiple aspects 
of optimization (e.g., pruning).


• Tabi is for high accuracy targets. 
Break-even points.


• What about using more models 
rather than 2? Tail latency will 
degrade a lot.

￼14



Thank you!
• Tabi is a model-less inference system optimizing for discriminative 

BERT-like models with fast parameter scaling.


• Tabi uses a multi-level structure with small and large models to reduce 
latency by invoking LLMs less frequently and on optimized data.


• Tabi in essence is a system implementation of ML techniques like 
early-exit and attention-based token pruning but with vanilla models.


• Tabi optimizes the inference pipeline and targets accuracy-demanding 
applications.
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