
Tabi: An Eicient Multi-Level Inference 
System for Large Language Models

Yiding Wang, Kai Chen (HKUST), Haisheng Tan (USTC), Kun Guo 
EuroSys 2023

 1



Background
• Scope: Transformer-based 

discriminative models, rather 
than generative models. 

• Classification and regression 
tasks, e.g., sentiment analysis. 

• Popular: 25 out of the 30 most 
downloaded models on 
Huggingface are BERT-like 
encoder-only models.
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BERT-like and GPT-like Models

• BERT-like models consist of 
Transformer encoders. 

• Input: text -> encoding 
representation -> predictions 

• Work similar to traditional DNNs 
like CNN for image classification.
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BERT-like GPT-like

Structure Encoder-
only

Decoder-
only

Task Prediction Generation

Output All at once Token by 
token

#Params 300 million 
- 1 billion

1.5 - 175 
billions



Language Models Scale-Up Fast

• For a few % of SOTA accuracy, 
they are adding a lot of 
parameters and latency. 

• Example: from DistilBERT to 
RoBERTa-Large, 7% acc.✅,  
4× latency❌, 5× #params❌. 

• The accuracy return of adding 
parameters is diminishing.
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How Current Inference Systems Work
• Model-less: The system 

selects the model to serve a 
task (rather than by hand). 

• Key module: Model selection. 
Because the real cost is 
running the selected model. 

• Idea: One best config for all 
queries of a task workload. 

• Cocktail (NSDI ’22) works 
similarly: ensemble vs. single.
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Image by the courtesy of INFaaS (Romero etc., ATC ’21).



Overheads of Inference Systems
• Model-less inference systems select 

models at the application level: One 
model for all. 

• Observation: A natural dataset is a 
mixture of simple and diicult queries. 

• Resource overheads for LMs:  
A much smaller model with slightly 
lower accuracy won’t get selected. 

• Only select LLMs for demanding tasks.
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Design of Tabi
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Run small DNN only; 
Get softmax outputs, 
attention weights, and 
calibrated confidence.

Return or 
dispatch query 

with a probability.

Run LLM faster; 
Get softmax 

outputs.

Attention-based 
word pruning.

 (§4.2)

Query Outputs

return

re-
route

confi-
dence

attention weights

Weighted dual 
ensemble.  (§4.3)

softmax 
outputs

softmax 
outputs

return
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Confidence-Based Early Return
• Calibrated confidence 

(Temperature scaling) 

• 50%-70% queries do 
not even invoke LLM. 

• Same overall accuracy. 

• Reduce the average 
latency by up to 40%. 

• Tail latency?
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Aention-Based Word Pruning

• Transformer-based language models 
build on the aention mechanism. 

• Some tokens are more important. 

• Longer sentences take more time.  
Time complexity: O(n2). 

• We prune re-routed query texts to 
accelerate LLM inference by ~15%.
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Seing System Hyperparameters
• Tabi-aware oine profiling: In addition to the accuracy and latency of 

available models, we also profile various hyperparameters and model 
pairings. We use early-stop techniques to limited the overheads.
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Evaluation: Average Latency
• GLUE benchmark and similar classification tasks. Single GPU. 

• Over 20% of average latency reduction compared to INFaaS (ATC ’21).
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Same 
accuracy

10%+ improvement compared to a recent baseline 
Cocktail (NSDI ’22)



Evaluation: Tail Latency
• Similar tail accuracy: 

Aention-based word pruning 
osets the overhead of the 
extra small-model level. 

• For dierent tasks, the early-
return rate is dierent. Higher 
speed-up for simpler tasks. 

• A task is easy means the 
accuracy gap between a large 
and a small LM is smaller.
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Easier Harder



Evaluation: System Hyperparameters
• We set online hyperparameters 

through oine profiling. 

• Dispatcher’s cut-o threshold (top 
fig.): A higher value -> re-routing 
more queries to the large model. 

• Aention pruning scale: A higher 
value -> more words are pruned, 
e.g., 4%, 14%, 63% in SST-2. 

• Meet acc. target & reduce latency.
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Evaluation: Other ML Optimizations
• Tabi (w/ vanilla models) performs 

similarly to early-exit DNN, in spite 
of the system overhead. 

• Because we have multiple aspects 
of optimization (e.g., pruning). 

• Tabi is for high accuracy targets. 
Break-even points. 

• What about using more models 
rather than 2? Tail latency will 
degrade a lot.
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Thank you!
• Tabi is a model-less inference system optimizing for discriminative 

BERT-like models with fast parameter scaling. 

• Tabi uses a multi-level structure with small and large models to reduce 
latency by invoking LLMs less frequently and on optimized data. 

• Tabi in essence is a system implementation of ML techniques like 
early-exit and aention-based token pruning but with vanilla models. 

• Tabi optimizes the inference pipeline and targets accuracy-demanding 
applications.
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