
Tabi: An Eicient Multi-Level Inference
System for Large Language Models

Yiding Wang, Kai Chen (HKUST), Haisheng Tan (USTC), Kun Guo
EuroSys 2023

 1

Background
• Scope: Transformer-based

discriminative models, rather
than generative models.

• Classification and regression
tasks, e.g., sentiment analysis.

• Popular: 25 out of the 30 most
downloaded models on
Huggingface are BERT-like
encoder-only models.

 2

BERT-like and GPT-like Models

• BERT-like models consist of
Transformer encoders.

• Input: text -> encoding
representation -> predictions

• Work similar to traditional DNNs
like CNN for image classification.

 3

BERT-like GPT-like

Structure Encoder-
only

Decoder-
only

Task Prediction Generation

Output All at once Token by
token

#Params 300 million
- 1 billion

1.5 - 175
billions

Language Models Scale-Up Fast

• For a few % of SOTA accuracy,
they are adding a lot of
parameters and latency.

• Example: from DistilBERT to
RoBERTa-Large, 7% acc.✅,
4× latency❌, 5× #params❌.

• The accuracy return of adding
parameters is diminishing.

 4

How Current Inference Systems Work
• Model-less: The system

selects the model to serve a
task (rather than by hand).

• Key module: Model selection.
Because the real cost is
running the selected model.

• Idea: One best config for all
queries of a task workload.

• Cocktail (NSDI ’22) works
similarly: ensemble vs. single.

 5

Image by the courtesy of INFaaS (Romero etc., ATC ’21).

Overheads of Inference Systems
• Model-less inference systems select

models at the application level: One
model for all.

• Observation: A natural dataset is a
mixture of simple and diicult queries.

• Resource overheads for LMs:
A much smaller model with slightly
lower accuracy won’t get selected.

• Only select LLMs for demanding tasks.

 6

Design of Tabi

 7

Run small DNN only;
Get softmax outputs,
attention weights, and
calibrated confidence.

Return or
dispatch query

with a probability.

Run LLM faster;
Get softmax

outputs.

Attention-based
word pruning.

 (§4.2)

Query Outputs

return

re-
route

confi-
dence

attention weights

Weighted dual
ensemble. (§4.3)

softmax
outputs

softmax
outputs

return

 (§4.1)

Confidence-Based Early Return
• Calibrated confidence

(Temperature scaling)

• 50%-70% queries do
not even invoke LLM.

• Same overall accuracy.

• Reduce the average
latency by up to 40%.

• Tail latency?

 8

Aention-Based Word Pruning

• Transformer-based language models
build on the aention mechanism.

• Some tokens are more important.

• Longer sentences take more time.
Time complexity: O(n2).

• We prune re-routed query texts to
accelerate LLM inference by ~15%.

 9

Seing System Hyperparameters
• Tabi-aware oine profiling: In addition to the accuracy and latency of

available models, we also profile various hyperparameters and model
pairings. We use early-stop techniques to limited the overheads.

 10

Controller

Worker

Model-1
process

Repository

Model store

Model-2
process

Model-n
process

App
queries

with
targets

Returned
DNN

results

Candidate
metadata

Multi-level
inf. engine

Tabi-aware
offline profiling

Model
selection

Inf. ctrl.
logic

Evaluation: Average Latency
• GLUE benchmark and similar classification tasks. Single GPU.

• Over 20% of average latency reduction compared to INFaaS (ATC ’21).

 11

Same
accuracy

10%+ improvement compared to a recent baseline
Cocktail (NSDI ’22)

Evaluation: Tail Latency
• Similar tail accuracy:

Aention-based word pruning
osets the overhead of the
extra small-model level.

• For dierent tasks, the early-
return rate is dierent. Higher
speed-up for simpler tasks.

• A task is easy means the
accuracy gap between a large
and a small LM is smaller.

 12

Easier Harder

Evaluation: System Hyperparameters
• We set online hyperparameters

through oine profiling.

• Dispatcher’s cut-o threshold (top
fig.): A higher value -> re-routing
more queries to the large model.

• Aention pruning scale: A higher
value -> more words are pruned,
e.g., 4%, 14%, 63% in SST-2.

• Meet acc. target & reduce latency.

 13

0.75 0.85 ����
80

90

100

Ac
cu
ra
cy
 (%
)

92.9% 94.0%
95.6%

667-2

0.75 ���� 0.95

89.1% 90.4% 90.5%

01LI

10.4 11.6
13.2

10

20

30

La
te
nc
y
(m
s)

17.4
20.3

26.7
Accuracy
Latency

Cut-oII c

0.5 ��� 0.9
80

90

100

Ac
cu
ra
cy
 (%
)

91.2% 91.4%

87.5%

SS7-2
Accuracy
Latency

0.5 0.7 ���

85.8% 85.7% 85.5%

01LI

22.5 22.1
19.8

15

25

35

La
te
nc
y
(P
s)

30.4 29.2
27.7

3runLng scale α

Evaluation: Other ML Optimizations
• Tabi (w/ vanilla models) performs

similarly to early-exit DNN, in spite
of the system overhead.

• Because we have multiple aspects
of optimization (e.g., pruning).

• Tabi is for high accuracy targets.
Break-even points.

• What about using more models
rather than 2? Tail latency will
degrade a lot.

 14

Thank you!
• Tabi is a model-less inference system optimizing for discriminative

BERT-like models with fast parameter scaling.

• Tabi uses a multi-level structure with small and large models to reduce
latency by invoking LLMs less frequently and on optimized data.

• Tabi in essence is a system implementation of ML techniques like
early-exit and aention-based token pruning but with vanilla models.

• Tabi optimizes the inference pipeline and targets accuracy-demanding
applications.

 15

