Tabi: An Efficient Multi-Level Inference System for
Large Language Models

Yiding Wang!, Kai Chen!, Haisheng Tan?, Kun Guo?
1iSING Lab, Hong Kong University of Science and Technology
2University of Science and Technology of China *Fuzhou University

Abstract

Today’s trend of building ever larger language models (LLMs),
while pushing the performance of natural language pro-
cessing, adds significant latency to the inference stage. We
observe that due to the diminishing returns of adding pa-
rameters to LLMs, a smaller model could make the same
prediction as a costly LLM for a majority of queries. Based
on this observation, we design Tabi, an inference system
with a multi-level inference engine that serves queries using
small models and optional LLMs for demanding applications.
Tabi is optimized for discriminative models (i.e., not genera-
tive LLMs) in a serving framework. Tabi uses the calibrated
confidence score to decide whether to return the accurate
results of small models extremely fast or re-route them to
LLMs. For re-routed queries, it uses attention-based word
pruning and weighted ensemble techniques to offset the sys-
tem overhead and accuracy loss. We implement and evaluate
Tabi with multiple tasks and models. Our result shows that
Tabi achieves 21%-40% average latency reduction (with com-
parable tail latency) over the state-of-the-art while meeting
LLM-grade high accuracy targets.

1 Introduction

Transformer-based language models, such as BERT [18],
have achieved strong performance in various natural lan-
guage processing (NLP) tasks. One key to their advancement
is the sheer volume of parameters and we are seeing a trend
of building ever larger language models (LLMs) to push the
limit of NLP performance [9, 34]. LLMs are computation-
ally intensive, resulting in high inference latency [80, 89],
whereas low latency is crucial to the user experience of NLP
applications.

Given the high computational demands of LLMs, it is
common to use the cloud infrastructure to deliver their
breakthroughs [71]. Machine learning (ML) inference sys-
tems [15, 31, 57] serve incoming queries of various appli-
cations with trained deep neural networks (DNNs) on the
server. They select appropriate models for the user to meet
tasks’ accuracy and latency requirements so users do not
need to, letting users deploy trained models efficiently with-
out mastering ML or system optimizations (i.e., model-less
inference [57]).

However, the current inference systems mostly overlook
the concerning status quo of NLP: LLMs trade a huge amount

of DNN capacity for top-grade accuracy, while the return di-
minishes [11]. Studies find that the pace of model growth
far exceeds the resulting increase in model performance and
more resources are required to improve language models
by making them larger [61]. Model compression [28, 59, 75]
has attracted considerable research attention, but the con-
sequent accuracy loss prevents compressed models from
serving accuracy-demanding tasks. Adaptive inference tech-
niques (e.g., early-exit[80, 89] and token pruning [29, 74])
require special DNN designing and training, thus are hard
to fit in with today’s model-less inference systems.

When serving accuracy-demanding applications that do
require LLMs, the current inference systems select the same
models to serve all queries of a task homogeneously [31, 57].
They ignore the variance of difficulty between individual
data samples within an NLP application [10]. This is because
there is no easy way to set per-query requirements in ad-
vance. Essentially, inference systems treat each DNN query
as a black-box! without understanding its specific needs and
focus more on resource scheduling instead.

We argue that optimizing for all queries homogeneously
when serving NLP applications is sub-optimal because the
LLMs selected could be a huge overkill for most less demand-
ing data samples. For example, we find that to serve a text
classification task with a strict accuracy target, INFaa$S [57]
needs to select a highly accurate but heavy LLM. Meanwhile,
a faster model with only 1/4 of parameters can correctly
fulfill over 90% of the queries. Yet it will not get selected
for its below-target accuracy. Such huge resource overheads
following today’s trend of developing larger models moti-
vate us to revisit the coarse-grained model selection when
serving LLMs and optimize single data inference.

We propose Tabi, an inference system featuring a novel
multi-level inference engine driven by individual per-query
feedback and employing recent advances of ML to optimize
the inference latency of LLMs for discriminative tasks. Unlike
today’s inference systems that serve the whole application
with the same models, Tabi incorporates multiple DNNs each
optimized for efficiency or accuracy to handle heterogeneous
queries within a task and avoid invoking the costly LLMs
when smaller models can suffice.

IThe previous white-box DNN inference engine [45] focuses on a different
aspect of reusing low-level operations to improve computational efficiency.

EuroSys ’23, May 08-12, 2023, Rome, ltaly

In Tabi, each query will first go through a level of effi-
cient DNN, obtaining predictions and a confidence score
well-calibrated with temperature scaling [32] that accurately
indicates the inference quality. We use a probability-based
dispatcher to decide a query’s DNN capacity: For a majority
of highly confident predictions, we directly return the re-
sults and achieve extremely low inference latencys; if not sure,
Tabi re-routes those challenging queries to the next level of
a more advanced model for high-quality inference (§4.1).

Tabi employs ML techniques and reuses results of the
small model to optimize the system overhead of occasionally
running extra DNNs. For re-routed queries, we directly prune
the words that contribute little to the task from the input data
using the previous DNN’s attention weights [69], offsetting
the small model’s overhead by reducing the LLM’s latency
instead (§4.2). Attention weights are intermediate variables
of language models. An encoded token is semantically im-
portant if it receives a lot of attention from other tokens [79].
Since natural language is highly redundant (due to less mean-
ingful elements such as prepositions and punctuation marks),
removing low-attention words can accelerate inference while
keeping accuracy [29, 74]. When outputting the results, Tabi
further improves the LLM’s accuracy by combining existing
predictions using weighted ensemble without requiring ex-
tra DNN computations (§4.3). Through designs inspired by
recent advances of ML/NLP, Tabi achieves fine-grained im-
provements over state-of-the-art (SOTA) inference systems.

We abstract a set of Tabi model levels and configurations
as a model candidate, which is logically equivalent to single
models and compatible with inference scaling systems (e.g.,
INFaaS). Meanwhile, we focus on single data inference (i.e.,
each query runs separately), which is fundamental to live
data analytics and can benefit complex workloads [73]. To
navigate the large optimization space brought about by the
general system architecture, Tabi conducts efficient offline
profiling to generate differently optimized candidates and
selects the optimal candidate for incoming tasks (§5).

We evaluate Tabi using multiple NLP benchmarks and
popular language models. Tabi achieves a 21%-40% reduc-
tion on average latency and good tail performance compared
to SOTA inference systems while meeting the LLM-grade
demanding accuracy targets. Tabi can work together with
ML-optimized models (e.g., via compression) by using them
in candidates and can switch to them for relaxed accuracy
targets. Compared to ML research on adaptive inference
(e.g., early-exit[80, 89] and token pruning [29, 74]), Tabi can
accelerate various generic language models for model-less
inference and achieve even better performance without re-
quiring customization and extra training for every model.

To summarize, the contributions of Tabi include: (1) propos-
ing the first inference system for the resource overhead issue
among increasingly large language models; (2) designing an
efficient multi-level system empowered by ML advancements

Wang et al.
v 1le8
o e BERT-small
S 3 overheads
£ ~_1 wrong prediction
© B BERT-small BV | .. DistilBERT
82. EE DistilBERT
— BEm BERT-base [EUESEENNE | - BERT-base
8 ™2 RoBERTa-base
o 1] mm RoBERTa-large
'g RoBERTa-base
=]
=2

u
o

60 70 80 90 95
Correct prediction (%) - RoBERTa-large

(a) Resource overheads of LLMs. (b) An imaginary MLFQ.

Figure 1. Each color-filled bar’s right edge shows its accu-
racy. A bar’s width shows the accuracy improvement over
the previous smaller DNNG, i.e., the percentage of queries
that can be correctly served by a model but not by the ones
on its left. The height shows the model size. The gray area
is the resource overheads compared to an ideal scenario.

that achieves significant latency reduction while meeting de-
manding accuracy targets; and (3) optimizing for generality
across models without requiring customization.

2 Background and Motivation
2.1 Resource Overhead of LLMs

We are in the paradigm of large language models (LLMs)
today. BERT [18], published in 2018, impressively improved
the GLUE (General Language Understanding Evaluation)
benchmark consisting of 9 tasks [72] from no higher than 69
out of 100 to 80. Since then, masked language modeling [18]
proposed by BERT and other self-supervised pre-training
objectives enable the utilization of large-scale datasets con-
sisting of billions of words.

Learning from massive amounts of data to substantially
understand the language requires large-scale models. For ex-
ample, BERT-large with 340 million parameters was one of
the largest DNNs when proposed. Switch Transformer [24]
uses more than a trillion parameters to achieve SOTA re-
sults on several cognitive tasks. In recent years, LLMs with
the attention mechanism [69] and similar architectures as
BERT have passed the human baseline and pushed the GLUE
leaderboard above 90.

On the other hand, achieving SOTA performance requires
more and more computational resources while the return is
diminishing [61]. For example, a SOTA Transformer model
spends 50% of its training footprint solely to achieve a de-
crease of 0.3 of the error rate [53]; the recent DeBERTa [35]
uses 36X more parameters than ALBERT [43] but only im-
proves the accuracy by 6%. GPT-3 [13], which has 175 billion
parameters, 100X of its predecessor, suggests that the current
LLMs “may eventually run into the limits of the pre-training
objective”.

Tabi: An Efficient Multi-Level Inference System for Large Language Models

Figure 1a shows the accuracies and sizes of five DNNs from
small to large for text classification. We can see that the ac-
curacy improvements over previous models (widths of bars)
become less noticeable even when adding more parameters
(height differences of bars). Our finding echoes sustainable
ML research that alarms the vast carbon footprint of training
and deploying LLMs [61, 65]. Research also suggests that for
less demanding tasks, especially on edge devices, such large
DNNss are not necessary when much smaller models might
suffice [27, 70].

The NLP status quo of developing larger models will cause
huge resource overheads when delivering their SOTA perfor-
mance using the current DNN inference systems. To under-
stand the issue, let us look at how they serve a text classifi-
cation task (SST-2 [72]) with a target accuracy of 95% in Fig-
ure 1a. To meet the demanding target (vertical dashed line),
the inference system chooses RoBERTa-large from available
trained models, which has an accuracy of 96.3% and 355 mil-
lion parameters. The workload’s resource usage is generally
equivalent to the area of the whole figure, serving all queries
(width) with the selected DNN’s capacity (height).

However, when analyzing the results post hoc, we find that
other more efficient models can make the exact prediction as
RoBERTa-large does for over 90% of queries (e.g., DistilBERT,
the second smallest model in Figure 1a, has an accuracy of
91%), although none of them meet the accuracy target to get
selected (see how model selection works in §2.2).

Ideally speaking, if a query can be served correctly by a
small model, we should not invoke larger ones.? This sce-
nario is similar to going through a multi-level feedback queue
(MLFQ) of models from small to large as Figure 1b while
knowing the shortcut (the dashed arrows) to the right level.
Thus, the optimal resource usage of a workload is the lower
right area of all bars in Figure 1a, which is only 11% of the
actual usage! We define easy queries as those obtaining the
same results no matter served with small or large DNNs.
While the left gray area is the overhead of unnecessarily
serving easy queries with over-powerful LLMs.

In reality, we do not know a query’s minimum require-
ments beforehand, and thus there is no shortcut to the most
efficient model; besides, going through multiple models adds
extra latency. This is why the current inference systems
match performance targets at an application level and fo-
cus on resource/model scaling instead. Nevertheless, the
remarkable potential of latency reduction, cost saving, and
environmental impact motivates us to optimize the inference
of each single query for LLMs in a model-less system.

2.2 DNN Inference Systems

Recent inference systems [31, 57] let users only specify high-
level performance requirements (e.g., accuracy and latency

2 As the Occam’s razor principle goes, entities should not be multiplied beyond
necessity.

EuroSys ’23, May 08-12, 2023, Rome, ltaly

for a sentiment analysis task) rather than specific models and
deploy trained models without mastering ML or system op-
timizations, termed as model-less inference. The system first
selects appropriate resources (e.g., GPU or CPU) and DNNs
(e.g., optimized for accuracy or efficiency) from registered
models. Then it routes queries to the selected models, runs
DNN inference, and returns the results. This paper focuses
on model selection and single data inference. In addition,
inference systems can also scale the resources and models
to adapt to workload changes.

The current inference systems make various optimizations.
INFaaS [57] selects the best single models automatically opti-
mized for different devices and batch sizes for inference and
quickly adapts to workload changes. Cocktail [31] employs
ensemble learning with multiple small models to reduce la-
tency through parallel execution; it also dynamically adjusts
model ensembles to minimize cost.

SOTA inference systems set performance targets for an
application and select models to serve the whole workload
homogeneously without inspecting whether the selected mod-
els are overkill for individual queries. Although Cocktail [31]
has a monitoring process using ground-truth labels which
are rare for real-world tasks, it cannot achieve fine-grained
model selection. This one-model-fits-all design is not a con-
cerning problem for many tasks when the DNN performance
improves notably as the model grows larger (i.e., less per-
query overheads), which is not the case for LLMs.

We observe an apparent variance of needs for DNN ca-
pacity within an NLP application: The natural workload is
a mix of difficult and easy samples and many easy samples
can be served correctly by a much smaller language model.
ML research has been exploring the variance in training and
inference settings: Hard sample mining [37, 63] spends more
training resources on complex data, and adaptive predic-
tion [10, 68, 80] develops specialized DNNs that only run
early layers for easy data. Tabi tackles the overhead issue of
serving LLMs from a model-less inference perspective.

2.3 Pay Attention to Transformers

Tabi focuses on serving discriminative LLMs including BERT
and 25 of the 30 most downloaded models [2]. Such models
summarize the inputs, learn unique proprieties, and make
predictions, which are different from generative models that
generate new tokens like GPT-3 [13] and machine transla-
tion [69]. Such pre-trained language models power various
NLP tasks that feed on encoded text representation, includ-
ing non-Latin [16], programming code [25], and clinical [36]
languages, such as sentiment analysis [48], natural language
inference [72], question answering [54], and applications
including review understanding [81] and content moder-
ation [58]. Tabi does not optimize for generative models
whose Transformer decoder architecture does not support
our confidence score and word pruning design.

EuroSys ’23, May 08-12, 2023, Rome, ltaly

Output: positive

[Sentiment Classifier J
[

FFN)

|
Attention Weight - V j

(
(
(Softmax J
(
(

Nx encoder
blocks

uonuany

OK"/\/d,

A

1
FCforQ,K,V J
!

Token Embedding

WION pue [enpisay

J

} Hx heads

'

n

“I" "like” "you

Figure 2. [llustration of the attention module in BERT, which
is similar to those in other language models.

Language model architecture. Discriminative language
models consist of a series of Transformer encoder blocks. We
first turn words into a numeric representation. Language
models split an input sentence into sub-word tokens and
map them to numeric vectors before feeding them to the
Transformer blocks. This step is called tokenization. A Trans-
former block is a particular neural network: As shown in
Figure 2, the input vector will go through a self-attention
module [69] connected to a feed-forward network (FFN). The
inputs of attention consist of Query (Q), Key (K), and Value
(V) with the same dimension (d), obtained by multiplying
the input vector by their weights, each split into multiple
heads. QKV are transformed into the intermediate attention
output. Then, an FFN will apply to the attention output and
produce input for the next Transformer block. This process
will repeat as going through the hidden layers of LLMs.

Attention mechanism. Language models build on the
attention mechanism. Conceptually, attention encodes the
relationship between tokens, generates context-dependent
embeddings, and lets models know the relevant tokens when
processing a vector. First, we calculate QKT //d) to produce
the attention score, which shows how close two tokens are
related. Intuitively, attention works like searching and re-
trieving in a database, which is why it uses scaled dot-product
to measure the similarity between tokens represented by Q
and K. Then we apply softmax to obtain the attention weight
of a query to enlarge the score for highly-related token pairs.
Multiplying the attention weights with V gives the result of
one head. To summarize, the attention mechanism works as:

Attention(Q,K,V) = softmax(Q—KT)V (1)
Vi

Wang et al.

& 3
& N >
< & &
& & S & é@ S
& Q K N O @
o L L e \
this | 1 | | | 1 030
| 1 1 1 1 1
paper 1 1 1 1 1 1
1 1 1 1 1 1
i | 1 0.25
ic | 1 1 | 1
5 I]
I 1 1 I 1
beautifully | [o 0.20
1 I 1 I 1
) 1 1 1 1 1
written 1 1 1 1 1
1 1 1 -0.15
1 1 1 1
. 1 1 1 1 1 1
enjoyable | 1 1 1 1 1 -0.10
1 1 1 1
1 1 1 1
toy o I -
1 1 1 I -0.05
read | 1 | | 1 1
1 1 1 1 [1

0.78 0.79 0.73

0.79 0.63 0.52 0.73

Figure 3. The attention weight matrix and the importance
vector. Tokens with top-50% weights are in bold. They are
more important to the task. Special tokens are omitted.

The multi-headed mechanism concatenates the output of
each attention head and lets the model focus on different
positions in parallel [51].

T
Attention weights. The attention weight sof tmax(%

normalizes the “attention” paid from one token to all the
other tokens in an input sequence to a probability distribu-
tion that sums to 1 (rows in Figure 3). Thus summing up
the attention weights received from all tokens will produce
an importance vector (bottom of Figure 3), in which more
impactful tokens that elicit more attention have higher weights.

For example, Figure 3 shows the attention weight matrix
of an input sentence produced by a sentiment analysis BERT
model. Tokens that express strong emotion (e.g., “beautifully”
and “enjoyable”) have the highest weights in the importance
vector, while adpositions (e.g., “and” and “to”) receive the
least attention. Nevertheless, all tokens, whether important
or not, contribute to the computational complexity of atten-
tion quadratically regarding the sequence length [69].

ML research finds that dropping unimportant vectors
across layers can reduce computation cost [29, 74] but they
require specially designed and trained models. Tabi acceler-
ates generic LLMs without code modification or re-training
by directly reducing the input data size (rather than per-layer
pruning) using the attention weights available in the system.

3 Tabi Overview

Motivated by the huge overheads of serving LLMs with to-
day’s model-less inference systems and new optimization
opportunities brought about by the attention mechanism,

Tabi: An Efficient Multi-Level Inference System for Large Language Models

EuroSys ’23, May 08-12, 2023, Rome, ltaly

[

App I Model store | | Tabi-aware
: »/| Model ['fInf. ctrl.|il] - .

quep;s >l|selection|l| logic || || Candidate ST

wit > _ metadata profiling
targets Controller 4 Repository

v
- === ——

Returned|< I Model-1 Model-2 Ie,yt-:L-llh/"lr;f | | Model-n

DNN (¥ ! process process o process
results [* l'————_———— engine |

Worker

Figure 4. Tabi workflow. Highlighted components are op-
timized in this work. Components in dashed lines form the
logical multi-level inference engine (§4).

Tabi proposes a novel multi-level inference engine to achieve
fine-grained latency reduction efficiently for generic models
driven by real-time per-query feedback.

Figure 4 illustrates the workflow and components of Tabi.
The model repository stores the trained DNNs submitted
and maintained by the user. Tabi conducts offline profiling
to obtain the statistics of single models and various multi-
level DNN configurations (i.e., candidates, details in §5). For a
new task with performance targets, the controller selects the
optimal candidate and runs DNN inference on the worker.
The inference control logic consists of the three modules in
§4 and manages the DNNs used on the worker. We make
contributions in model selection and single data inference
while the design of Tabi has no substantial difficulty to work
with resource/model scaling systems [31, 57].

Model repository. Tabi maintains a model repository that
stores the registered DNNs and their metadata, including
the accuracy, inference latency, memory utilization, and in-
termediate results including attention weights and softmax
outputs. In addition to single models, we efficiently profile
various configurations of Tabi formed by available models
and view them as logical model candidates.

Model selection. As discussed in §2.1, the theoretically
ideal solution ignores the prohibitively large cost of enumer-
ating all DNNs to find the perfectly fitting one for a single
query. To handle this in practice, Tabi generates differently
optimized candidates to bound

the overhead and balance the performance. For queries
of a specific task, Tabi selects the optimal model candidate
regarding the the target and runs inference. We further elab-
orate the criterion in §5.

4 Multi-Level Inference Engine

The core of Tabi is a novel multi-level inference engine that
employs both efficient and highly accurate DNNs to serve
heterogeneous NLP queries with corresponding resources,
as shown in Figure 5. In addition to the DNNS, the inference
engine includes (1) a probability-based dispatcher that uses
the calibrated confidence score to return accurate predictions

attention weights

S
Run small DNN only;
Get softmax outputs,
attention weights, and
calibrated confidence.
return

softmax

outputs

.
Weighted dual

ensemble. (§4.3)

}

Attention-based

Return or
dispatch query

- ot word pruning.
with a probability.
($4.1) (§4.2)

return l
Run LLM faster; E»‘

softmax| Get softmax

outputs| outputs.
Figure 5. Overview of multi-level inference engine with two
model levels. 3 system modules are highlighted. Generated
variables are in italic, and system decisions are in bold.

00000

fast; (2) input data pruning using existing attention weights
to accelerate LLM inference for re-routed queries and reduce
system overheads; and (3) a weighted multi-level ensemble
of activated models to further increase the final accuracy.

Compared to ML-native optimizations. Tabi concep-
tually echoes the ML research on adaptive inference (e.g.,
early-exit[80, 89] and token pruning [29, 74]) in terms of
consuming only necessary DNN resources. We find that let-
ting a DNN decide which layer to return results or which
tokens to drop requires non-trivial and, more importantly,
per-model non-scalable labor, including modification to the
model architecture and additional training efforts. This is not
ideal because the booming of pre-trained language models
and model-less inference systems were meant to save efforts
for both ML development and deployment. Instead, Tabi
achieves low inference latency with DNNs straight from
model zoos without customization. Tabi implements the
attention-aware multi-level design at the system level in-
spired by ML advancements, so that we can directly serve
generic or generated models (e.g., via compression [28]) with
optimized performance and usability of model-less inference.
We evaluate Tabi compared to early-exit and optimized sin-
gle models in §7.5.

4.1 Probabilistic Dispatcher

In applications that handle complex natural languages, DNNs
should not only be accurate but also need to indicate when
they are likely to be incorrect. In Tabi, returning the incorrect
results of small models early could nullify any advantages of
LLMs and risk the violation of accuracy targets. We design
a probabilistic dispatcher to decide when to return outputs
early and when to continue the inference.

A straightforward way to get the confidence of predic-
tion is using the softmax probability, which sums to 1. This
method is used by the popular Hugging Face deployment
pipeline [22] and its model zoo. The probability of a class i
among the set of all classes K is calculated as:

exp (logits;)
2 jex exp (logits;)

P(y;) = softmax(logits;) =

EuroSys ’23, May 08-12, 2023, Rome, ltaly

>1.01 Calibrated 1.0

% confidence lo 0.8 \

S 0.91 m#m Uncalibrated g ' Re-routing

v} J— A0

O 0.6 probability

© 0.8 E == Reference

% > 0.4 Confidence

© 07 e | CDF

o $ 0.2

> e = e

< 0.6 0.0 ’ ‘
0.6 0.8 1.0 0.5 0.6 0.9 1.0

Confidence score

Confidence score

Figure 6. Confidence score buckets and their average ac-
curacy for SST-2 (left). Confidence calibration allows us to
make accurate dispatching decisions. Our re-routing proba-
bility curve (right) can balance the accuracy and efficiency.

where logits is the raw model output.

However, modern DNNS, including language models, are
“over-confident” [17, 32]. In our test, small models constantly
make predictions with softmax probabilities over 0.9, which
are higher than their actual accuracies; besides, even wrong
predictions are often made with high softmax probabilities.

In the left part of Figure 6, we group the results of a bi-
nary classification workload by confidence score (Equation 2,
range from 0.5 to 1) into five buckets and show their average
accuracies as the patterned orange bars. The red diagonal
line illustrates the ideal relationship between the confidence
score and the actual inference accuracy when they are equal.
Clearly, they do not match and high softmax probabilities
(i-e., above 0.8) do not guarantee high accuracies, making it
hard to understand the inference quality.

To dispatch queries reliably and balance accuracy and
efficiency, we use temperature scaling [32] to calibrate the
softmax confidence score con(y) so that it can match the
actual inference accuracy:

. exp (logits;/T)
conly) = max 2 jex €xp (logits;/T) @

where T is the temperature set through a quick fitting.

As a result, the calibrated confidence score (blue bars in
Figure 6) matches the ideal distribution of accuracy, provid-
ing Tabi reliable basis to decide when to return the correct
results of the efficient model level quickly.

Calibrating with Equation 3 does not require DNN re-
training. A quick fitting that minimizes the negative log-
likelihood loss can set the optimal T. We calibrate the trained
models in the model repository together with the offline
profiling. We use appropriate techniques such as multi-class
calibration [42] and regression calibration [41].

With the calibrated confidence score con(y), we define the
probability of re-routing a query to the next level in Equa-
tion 4, which is a combination of the normalized confidence,

Wang et al.

the ReLU, and the scaled sigmoid activation functions:

1

Plarge(y) = 1 1 +exp (k - norm(con(y))) con(y) > ¢ ,
1 con(y) <c
norm(con(y)) = < ¢ _1
1-c¢ 2
(4)

where c is the cut-off threshold close to 1 and k is a scaling
parameter for the slope of the sigmoid. Both ¢ and k are
task-specific for the various distribution of difficulty vari-
ance. Tabi offline-profiles them with the DNN models and
will be set at the model selection phase to achieve optimal
performance (§5). Equation 4 combines soft probability and
hard cut-off to balance accuracy (high recall of challeng-
ing queries) and latency (high precision of re-routing). We
evaluate how hyperparameters affect different tasks in §7.4.

The right-hand side of Figure 6 illustrates Equation 4 with
¢ = 0.9 and two classes. For queries whose confidence is
lower than the cut-off threshold, the dispatcher always re-
routes them to the next-level model. For the more certain
queries, we use the scaled sigmoid function to prioritize those
with near-100% confidence for returning and adjust the re-
routing probability of queries whose confidence is just above
¢ for better accuracy (solid line). Compared to linearly de-
creasing the re-routing probability (dashed line), our scheme
can return more queries early for lower latency and achieves
higher accuracy among the returned ones.

Although the probability of returning early (area above
the solid line) seems limited, we find that the CDF of queries
(green dotted line) usually concentrates around the high-
confidence side, so the potential is huge. In our evaluation,
the dispatcher can return around 50% to 70% of the queries
after the first efficient model. This is because our model
selection process can use a competent and efficient model as
the first level to share the workload of LLMs.

4.2 Attention-Based Word Pruning

After the efficient level and dispatching, those challenging
queries still require LLMs. A concern about serving such
queries with extra small models is that re-routed queries
would increase the tail latency even though we improve the
average and median performance. On the contrary, we find
that the small model’s results can reduce the latency. We use
the real-time semantic understanding (i.e., attention weights)
of a query made by the small model to accelerate its LLM
inference by pruning unnecessary words from the input data
and offset the multi-level latency overhead.

Natural languages contain redundant tokens such as prepo-
sitions and postpositions that contribute less to the NLP
task [14, 29]. Pruning such words in a query can accelerate
inference because the computational complexity of the at-
tention mechanism grows quadratically with the sequence
length [69]. Recent ML research develops specialized DNN

Tabi: An Efficient Multi-Level Inference System for Large Language Models

structures to adaptively prune tokens across layers based
on attention weights [29, 74]. Nevertheless, such optimiza-
tion requires specialized models and extra training, so it
does not fit into model-less inference systems. Instead, we
directly optimize the input texts of the LLM at the model
level rather than layer level through the attention weights
readily provided by the previous small model.

As introduced in §2.3, language models build on the atten-
tion mechanism, which indicates the semantic importance
of each sub-word token. We obtain the importance vector I
(as illustrated in Figure 3) of a query by extracting and accu-
mulating the attention weights of each layer and head of the
previous model, as shown in Figure 5. Attention layers and
heads handle different aspects of the language [14, 56]; thus,
accumulation makes the importance vector more reliable.
The attention weight is an intermediate variable produced
during inference, so this summation process is fast.

To select the significant tokens and generate a pruning
mask, we normalize I to relative z-scores and convert them
to 1s and Os (to be pruned) with a binary step:

1 I>a-p

5
0 I<a-p ®)

prune_mask(I) = {

where p is the mean value of I and « is the hyperparameter
of relative pruning degree. We set @ through model profiling
and selection (§5). We always keep special tokens.

Having the token pruning mask is not enough because dif-
ferent language models usually have different numeric rep-
resentation methods of tokens called tokenizers. For example,
some tokenizers will split and encode the word “beautifully”
into two tokens, “beautiful” and “-ly”, while others encode
it as a whole. Besides, tokenizers with different vocabular-
ies will also map the same word to different numeric word
ids. We find that the only universal data passing interface
between models is the text itself.

Our inference system should optimize for generality across
models with different architectures and embedding formats.
Instead of pruning tokens across layers [29], Tabi generates
a word pruning mask and applies it on the raw input texts to
the LLM, e.g., “this paper beautifully written enjoyabe” is the
optimized query from the toy example in Figure 3. We prune
a word only if all of its sub-word tokens are 0s in Equation 5,
using token’s positional information from the tokenizer. For
instance, if “beautiful” should be preserved while “-ly” is
masked, Tabi keeps the whole word for accuracy.

Attention-based semantic understanding is universal across
language models and we experimentally validate the cor-
rectness of word pruning using another model’s attention
weights. We find that smaller models produce similar dis-
tributions of importance vectors compared to large ones,
tested on SST-2 dataset: 89% of the top-50% important tokens
are the same between a small and a large model, indicat-
ing Tabi can maintain the necessary tokens. The difference

EuroSys ’23, May 08-12, 2023, Rome, ltaly

is that LLMs are better at clearly distinguishing high- and
low-importance tokens. Theoretical research suggests that
layers and heads in LLMs work as an ensemble of low-rank
attention layers [27, 51]; removing some (i.e., using small
models) does not drastically alter the attention outputs [56].

4.3 Weighted Multi-Level Ensemble

For those re-routed queries, rather than directly outputting
the prediction of the final-level LLM, we employ weighted
ensemble learning to combine it with the previous levels’
predictions to improve accuracy. This technique does not add
extra ML computations since all the intermediate softmax
outputs are readily available in the multi-level structure.

An ensemble is a set of models whose individual decisions
are combined with weights to make predictions jointly. It
has been proved that adding independent models, even weak
ones, to an existing large model can be more accurate than
a single large model alone because of the reduced variance
and bias [40, 49].

When the LLM outputs its results, Tabi forms an weighted
average prediction s(y) (i.e., soft voting) with existing pre-
dictions of the efficient model. For example, a two-level Tabi
configuration outputs:

s(y) = w-softmaxy(y) + (1 —w) - softmax:(y) (6)

where w is the weight parameter of the final LLM in the en-
semble algorithm [12]. We use the standard method to set w
at the model selection stage: Weights are proportional to the
accuracy on the re-routed data during offline profiling [19].

The recent inference system Cocktail [31] proposes an
ensemble of smaller DNNs to achieve parallel execution and
reduce latency, which essentially makes LLMs shallower but
wider. Different from Cocktail, Tabi uses ensemble to make
up for the slight accuracy loss during the previous latency-
focused optimizations at almost no additional cost. Latest
biomedical research proposes to adaptively set the ensemble
weight using each data sample’s confidence score [50] which
is available in Tabi, but we find the overall improvement
limited and decide to keep the system simple.

5 Model Candidate Profiling and Selection

To navigate Tabi’s optimization space, we need to properly
configure the system, e.g., how many levels and which mod-
els should we use, how confident to return predictions early,
and how unimportant a word is for pruning. We abstract
a set of Tabi configurations as a model candidate with its
accuracy and latency performance. A candidate is logically
equivalent to other DNN serving units, e.g., single models in
INFaaS [57] and ensembles in Cocktail [31], such that Tabi
can be compatible with existing inference scaling systems.
Tabi includes an offline profiling and an online selection
process. Profiling generates a range of differently optimized
candidates. When a task arrives, Tabi selects a candidate
whose combined performance can meet the targets with the

EuroSys ’23, May 08-12, 2023, Rome, ltaly

lowest latency. Tabi’s candidate profiling and selection gen-
erally follow the SOTA inference pipeline [31, 57] while
accommodating the internal mechanism of Tabi.

Tabi-aware offline profiling. The performance of a can-
didate is jointly decided by the base models and Tabi hy-
perparameters (e.g., ¢, @, and w). First, we profile the regis-
tered single models using representative datasets as INFaaS
does. We save their statistics (e.g., accuracy and latency)
and Tabi-specific intermediate variables (Figure 5), including
models’ softmax outputs (#class-length vectors), calibrated
confidence scores (floats), and importance weights from at-
tention (#token-length vectors). These variables add negligi-
ble storage overheads (i.e., a few megabytes per model).

Next, we obtain the combined performance of candidates
with early stopping for efficiency. Tabi automatically gener-
ates a list of possible multi-level DNN combinations starting
from 2 levels with accuracy in ascending order using regis-
tered models. To remove impractical choices (e.g., putting
LLMs at all levels or using too many models), we only keep
candidates whose 75th tail latency is within 1.5X of the slow-
est model used. For each combination, we test a range of
hyperparameter values. For dispatcher cut-off c, testing dif-
ferent values does not invoke additional DNN computations
because they essentially rearrange the saved softmax re-
sults. We decrease ¢ from 0.95 (1 means always using LLMs)
with step size 0.05 and stop when the combined accuracy is
lower than the average of the models used. We set ensemble
weight w to be proportional to each model’s accuracy (see
§4.3). Since word pruning modifies the input, profiling the
pruning scale & requires extra rounds of DNN inference only
for LLMs. We use the saved attention weights of a represen-
tative efficient model DistilBERT and increase a from 0.5 (0
means no pruning) with step size 0.1 to generate the pruning
mask until an LLM’s accuracy loss exceeds 2%. These designs
reduce the overhead over the standard one-time profiling
(discussed in §7.5). Finally, we save the metadata of Tabi
candidates at the model repository just like single models.

Online candidate selection. With the profiled perfor-
mance, Tabi selects candidates for online tasks using the
saved metadata from the model repository following exist-
ing criteria [57]. We choose the candidate that achieves the
lowest latency that can meet the performance target (accu-
racy and latency) of a task. Then the controller launches the
selected model instances on the worker machine to serve
queries of this application. Our work focuses on optimiz-
ing single data inference while existing resource and model
scaling systems still apply. For example, a Tabi candidate
could horizontally scale to multiple instances or vertically
switch to different internal models or parameters to handle
workload changes like single models (§7.5).

Wang et al.

6 Implementation

We build Tabi using Python and libraries including PyTorch [5]
as the base ML framework, HuggingFace Transformers [4]
for the NLP toolbox and model implementations, and Torch-
Serve [7] as the inference system backbone.

Clients can send text queries to the inference REST API,
and developers can register trained DNNs using the man-
agement API, both hosted by the controller. We implement
the model selection algorithm on the controller. Each active
language model runs in a process, whether using GPU or
CPU, on the worker machine. The model repository stores
trained models on networked storage via GlusterFS [1] and
conducts offline profiling on an available worker. It saves the
metadata of candidates as Python dictionary for fast lookup
and can upgrade to distributed Redis [6] for scalability.

The multi-level inference engine is a logical entity, as
shown in Figure 4. The probabilistic dispatcher (§4.1), attention-
based word pruning (§4.2), and weighted multi-level ensem-
ble (§4.3) all reside in the controller, exchanging the control
logic and intermediate results with the DNNs on the worker.
Implementing attention-related operations uses Hugging-
Face standard APIs without requiring model changes. The
separation of control and compute ensures the scalability
of Tabi, as models for the same task do not have to run on
the same physical machine. Besides latency, a monitoring
process updates the CPU/GPU and memory utilization of the
worker to the controller for extensible resource scheduling
which is not the focus of this paper (§2.1).

7 Evaluation

We first evaluate Tabi’s overall performance of reducing in-
ference latency (including average and tail) while meeting
LLM-grade target accuracy compared to SOTA inference sys-
tems (§7.2). To demonstrate the effectiveness of Tabi’s design
choices, we dive into the candidate profiling and selection,
the three system components of the multi-level inference en-
gine (§7.3), and the impact of hyperparameters (§7.4). Finally,
we discuss the system overhead, ML-native optimizations,
and generality (§7.5). The main takeaways are:

e Tabi reduces inference latency by 21%-40% on average
for accuracy-demanding applications;

e Tabi minimizes the system overhead and achieves com-
parable tail latency performance;

o Tabi shows advantages over ML-native optimizations
and is compatible with other models/systems.

7.1 Methodology

Testbed setup. We evaluate Tabi using a server with 2
NVIDIA V100 GPUs, 40 CPU cores, and 128 GB memory,
running Ubuntu 18.04. The server is network-attached to
hard disks as the model store. The logical controller and
worker are located on the same server in our evaluation.

Tabi: An Efficient Multi-Level Inference System for Large Language Models

#Parameters Latency Accuracy
Model (million) (ms) (%) kf
BERT-small 28 [72.1 6
DistilBERT* [59] 66 7 83.2 5
ALBERT* [43] 11 14 84.5 5
PruneBERT* [60] 110 15 81.2 4
DeBERTa-small 142 12 86.9 4
BERT-base [18] 110 17 84.1 4
RoBERTa-base [47] 124 19 86.3 4
DeBERTa-base [35] 184 20 88.8 3
BERT-large 340 24 86.7 2
RoBERTa-large 355 26 90.6 2
DeBERTa-large 406 29 91.3 2
DeBERTa-xlarge 886 38 91.7 1

Table 1. Summary of the language model architectures
ranked by inference latency for MNLI. The latency is the
DNN execution time. For other tasks/datasets, the relative
performance is similar. We consider the bottom four to be
LLMs because of their large sizes. A lower packing factor
(Pf) suggests a higher per-model cost. * denotes ML-native
optimized models.

Tasks, datasets, and models. We use the GLUE bench-
mark [72], MASSIVE [26], and CLINC150 [44]. GLUE is a
standard evaluation method that covers 9 classification and
regression datasets. MASSIVE (en-US) for scenario detec-
tion and CLINC150 for intent classification each have 18 and
150 classes. The validation (dev) sets we use have mostly
thousands of data points. Each query contains a single data
sample without zero padding (i.e., batch size = 1) and arrives
after the previous one finishes. We select 12 representative
and generic language models in Table 1, ranging from highly
efficient to having top-grade accuracies. Three models noted
with * are each optimized with knowledge distillation, pa-
rameter sharing, and pruning. Most of the fine-tuned models
are publicly available [2]; if not, we fine-tune them using the
pre-trained backbone.

Model storage. The size of models in Table 1 is 32bit X
#parameters; the model zoo also lists models’ size [2]. For ex-
ample, DistilBERT (66M), BERT-base (110M), and RoBERTa-
large (355M) each proportionally take 268MB, 440MB, and
1.43GB. Models fine-tuned for different tasks in Table 2 have
almost the same size (<1%) since the task-specific classifier
has much fewer parameters than Transformer blocks (Fig-
ure 2). Selecting from available models is a standard practice
in model-less inference [57], and not all models will be de-
ployed. Besides, inference systems are not the only user of
stored models [33, 52]. We curate various models to show
Tabi’s generality, while the user-maintained repository size
depends on users’ deployment scale. Tabi is not designed for
edge devices, as distributing models is much more costly [88].

EuroSys ’23, May 08-12, 2023, Rome, ltaly

Baselines. We compare Tabi with INFaaS [57] and Cock-
tail [31]. INFaaS selects the best single model, and Cocktail
forms a voting ensemble of smaller models to reduce latency.
Both systems propose resource scheduling designs, while
we focus on optimizing the latency of single data inference
and estimate the cost and supported throughput in a static
setting. We set Tabi and Cocktail to use both GPUs to execute
multiple models while INFaaS uses a single GPU.

Metrics. The main latency metric is the average DNN
inference time per query, including Tabi’s control logic. Data
pre-processing time (e.g., tokenization) is excluded because it
is a static and small factor which is highly optimized [3] but
not by Tabi. We show multiple percentiles of the inference
latency given the variance of tasks. The accuracy metric is
the percentage of queries that obtain the correct results. We
average the results of three runs. To understand the cloud
serving cost on our testbed, we use the packing factor (Pf)
introduced in Cocktail as a proxy of unit price, which is
the number of models that can be executed concurrently on
a single GPU without latency degradation (>10%). Larger
models have lower packing factors, thus the per-model cost
(1/Pf) is higher. The estimated cost of serving a dataset (C)
is the sum of the product of each model (m)’s cost (1/Pfy,),
average time of the queries it serves (T,,), and percentage of
workload (Wy,): C = ¥ nem 1/Pfom X Ty X Wiy, For INFaaS,
there is one model, and W is 100%; Cocktail uses multiple
models (M), and each W}, is 100% without auto-scaling; for
Tabi, the workload handled by the small model (W) is 100%
while the large model’s W; < 100% (see §7.3.2). We test the
throughput (queries per second) using the workload pattern
described before which has no queuing, batching, or scaling.

7.2 Overall Performance

Table 2 summarizes the evaluation results. We set the target
accuracy of tasks to be rather high to reflect Tabi’s scope of
serving accuracy-demanding applications that require LLMs.

Accuracy. For all tasks, Tabi achieves the LLM-grade ac-
curacy targets. Compared to INFaaS, which uses LLMs to
serve all queries, and Cocktail, which uses an ensemble of
models, Tabi’s accuracy difference is within 1% on average.
Tabi can balance latency and accuracy by accurately offload-
ing the confident queries. As a result, early returned queries
have a similar accuracy whether served by efficient models
or LLMs (detailed analysis in §7.3.2). For the challenging
queries which would have degraded quality if served by
small models, Tabi utilizes LLMs and ensemble learning to
ensure accuracy (details in §7.3.3 and §7.3.4).

Latency. Tabi drastically reduces the average inference la-
tency by 21% to 40% compared to INFaaS across various tasks.
Compared to the recent Cocktail, Tabi also achieves an 11%-
26% average latency reduction. Figure 7 shows the detailed

EuroSys ’23, May 08-12, 2023, Rome, ltaly Wang et al.
Method SST-2 MNLI (-mm) RTE QQP MRPC CoLA QNLI STS-B ‘ MASSIVE CLINC
Tgt. acc. (%) - 95 90 85 92 90 65 94 92 ‘ 92 97
INFaaS 96.1 91.2 86.6 92.3 90.9 67.6 94.7 92.4 92.5 97.3
Accuracy .
@) Cocktail 954 90.4 85.2 92.1 90.0 65.1 94.3 92.1 92.1 97.0
° Tabi 95.6 90.4 86.0 92.1 90.1 65.2 94.6 92.0 92.1 97.0
INFaaS 22.0 25.8 38.1 25.4 24.9 22.5 26.0 21.2 20.9 21.3
Latency .
(ms) Cocktail 17.8 22.9 34.7 20.8 20.2 18.2 22.3 17.5 15.4 17.2
Tabi 13.2 20.3 30.0 16.0 16.5 15.7 18.7 13.4 13.5 14.8
Estimated INFaaS 11.6/42.7 13.3/36.1 19.5/24.6 13.2/36.3 13.2/36.4 11.8/40.7 13.5/35.5 11.4/41.9 | 11.2/42.4 11.5/41.8
cost & tout Cocktail 9.4/53.2 15.3/40.0 20.3/26.8 11.7/43.7 12.1/44.0 10.7/50.1 12.8/40.6 9.6/53.0 9.5/55.9 10.5/52.9
P Tabi 5.8/63.8 9.3/42.1 14.2/29.2 7.2/53.5 7.9/52.2 6.5/53.8 8.8/46.5 6.0/62.2 5.9/61.9 6.3/59.3
Lat
4 ency 40/26 22/11 21/12 37/23 34/18 30/14 28/16 37/23 35/12 30/14
reduction (%)

Table 2. Summary of evaluation tasks. Compared to INFaa$S, Tabi achieves 21%-40% average inference latency reduction while
meeting the demanding accuracy target. Compared to Cocktail, Tabi also reduces the latency by 11%-26%. In our static setting,
Tabi can reduce the estimated cost by 27%-50% and 30%-39% and increase the throughput by 16%-49% and 5%-20% respectively.

The costs are estimated using the packing factor (Pf).

latency performance. The 75% and 99% tail latencies are im-
portant to large-scale systems, while the 25% and median
latencies are also crucial to ML analytics since many appli-
cations favor “freshness” when the follow-up analysis can
be updated when new results arrive [21]. Tabi significantly
reduces the 25% and median latencies by up to 62% and 45%
compared to INFaaS and Cocktail, thus is especially effective
for agile NLP applications. We also achieve better tail latency
than INFaa$ and close to Cocktail which expressly focuses
on parallel execution. Tabi works well for tasks with 10+
classes (e.g., MASSIVE and CLINC150) since the dispatcher
can well handle multi-class confidence calibration.

Estimated cost and throughput. Tabi can reduce the
cloud serving cost and support higher throughput by running
fewer LLMs. As explained in §7.1, we estimate the cost of
models normalized by datasets using the same GPU testbed
assuming the workloads and hardware are well scheduled
so that the cost of running each model is relative to its us-
age fraction of the device. Tabi reduces the cost C by 27%
to 50% and 30% to 39% compared to INFaaS and Cocktail
respectively. Cocktail sometimes gets higher costs than IN-
Faa$S since more base-size models are used; Cocktail uses
auto-scaling for dynamic workloads to reduce costs which is
not activated with our static query pattern. For single data
inference workload, Tabi generally improves the throughput;
compared to INFaaS and Cocktail, we can serve 16% to 49%
and 5% to 20% more queries.

7.3 Performance Breakdown

We deep dive into the performance of each system compo-
nent on two representative datasets, SST-2 and MNLI, to
explain our design choices. We define task difficulty as the

10

40 SST-2 40

3)]

Tabi

MNLI

%
T

Latency (ms)
= N
o o

INFaaS Cocktail INFaaS Cocktail Tabi

Figure 7. Latency breakdown. Each box shows the 25%,
median, and 75% latencies; whiskers plot the 1% and 99%
non-outlier values. Tabi largely reduces the median and 25%

latency and maintains the tail latency compared to INFaaS.

accuracy gap between using small models and LLMs rather
than the absolute accuracy. SST-2 is a relatively simple sen-
timent analysis task with two labels, while MNLI is a more
challenging natural language inference (NLU) task with three
labels where LLMs perform much better than small models.

7.3.1 Candidate Selection and Hyperparameters. We
find that for all the evaluated tasks, Tabi always selects the
inference engine with two levels: an efficient DNN and an LLM,
skipping the base-size models in Table 1. For example, for
SST-2 Tabi selects DistilBERT and RoBERTa-large, while for
MNILI, Tabi selects DistilBERT and DeBERTa-large. No candi-
date uses DeBERTa-xlarge for its very limited improvement
over the large version, nor BERT-large over other modern ar-
chitectures. Similarly, INFaaS mostly selects RoBERTa-large,
and Cocktail selects multiple base and small models.

Our model profiling and selection bound Tabi’s overhead;
thus, it favors a two-level structure over more levels. As
shown in Figure 7, using two models can strike a balance

Tabi: An Efficient Multi-Level Inference System for Large Language Models

between workload sharing (reducing average latency) and
system overhead (maintaining a comparable tail latency). We
analyze the performance of using three models in §7.5.

In addition to models, this step sets the Tabi hyperparame-
ters. For example, it chooses the dispatcher cut-off threshold
c of 0.95 for SST-2 and 0.85 for MNLI and pruning scale a of
0.7 and 0.9. A larger c lets the first model level return more
queries with high confidence: 89% of queries of SST-2 have
confidence above 0.9, while only 52% have such high con-
fidence for MNLI. A larger a prunes more words for larger
latency reduction. We test the sensitivity in detail in §7.4.

7.3.2 Workload Sharing with Dispatcher. After going
through the first-level DNN, the probabilistic dispatcher
reads the calibrated confidence score and decides whether to
return the outputs directly. A good dispatcher should return
as many easy queries as possible to produce fresh results.
Meanwhile, the accuracy gap between using efficient models
and LLMs should be small for early returned queries and
large for re-routed ones so that they can get what they need.

For SST-2, Tabi serves 69.8% of queries only using a small
DNN while achieving 97.7% and 91.4% accuracies for re-
turned and re-routed queries. To understand this perfor-
mance, we also test alternatively serving early returned
queries with an LLM (as INFaa$S does) and serving re-routed
queries with a small model and find the accuracies to be
98.7% and 76.2%. Their 1.0% and 15.2% gaps show that we
correctly assign the right DNNs to heterogeneous queries.

For the more challenging MNLI task, Tabi early returns
49.4% of the queries. This is because LLMs have a large ad-
vantage over efficient DNNs for more difficult tasks. Tabi
achieves 96.1% and 85.5% accuracies for each level, while
if we switch the models, the accuracy would be 96.8% and
71.3%; the gaps are ideally 0.7% and 14.2%. To summarize,
Tabi achieves minimal accuracy loss (within 1%) for early re-
turned queries, suggesting that our dispatcher can correctly
distinguish the easy queries from the rest.

Figure 7 also shows the modest drawback of Tabi: Com-
pared to the largely optimized 25% and median latencies, the
tail latency does not improve much compared to INFaaS and
is not as good as Cocktail. This is because Tabi sequentially
runs DNNss for a limited number of queries while Cocktail
always runs in parallel. That being said, our attention-aware
pruning successfully reduces overheads and dismisses the
concern of slowing down the tail performance of LLMs.

7.3.3 Tail Latency Reduction With Attention. By re-
using the attention weights of the small DNN to prune input
words, we can accelerate LLM inference of the re-routed
queries and thus reduce the tail latency. Table 3 shows the
performance of word pruning. For SST-2, by pruning the
14.2% least-attended words from 26 words per query on av-
erage to 22.3 words, we can reduce the execution latency of
LLM by 17%. The 0.3% accuracy loss on the re-routed queries
can be remedied by the weighted ensemble (see §7.3.4).

11

EuroSys ’23, May 08-12, 2023, Rome, ltaly

Task Word pruning LLM latency LLM accuracy
as ratio (%) reduction (%) loss (%)

SST-2 14.2 17 0.3

MNLI 13.6 154 0.3

Table 3. Attention-based word pruning reduces the inference
latency of LLMs with minimal accuracy loss and offsets the
extra small DNN overhead in the tail performance.

For MNLI, the performance of word pruning is similar.
One difference is that the NLU task of MNLI consists of
two separate sentences in a query rather than a single one.
We design Tabi for generality so that it can serve various
input formats and tokenizers by focusing on words rather
than tokens. As a result, optimizing the re-routed queries by
~14% can approximately offset the overhead of sequentially
executing an efficient DNN (compared to INFaaS$ in Figure 7).

7.3.4 Weighted Multi-Level Ensemble. Rather than di-
rectly outputting the LLM predictions for re-routed queries,
we form a weighted ensemble of multi-level models whose
results are already available. We find that by weighted ensem-
bling both levels, we can improve the LLM accuracy by 0.4%
(91.4% to 91.8%) and 0.3% (85.5% to 85.8%) on these datasets
without extra DNN computations, neutralizing the accuracy
loss of the attention-based word pruning (see Table 3).

7.4 Sensitivity Analysis

Tabi automatically selects the hyperparameters in a candi-
date to achieve a balance: meeting the accuracy target while
having the lowest latency. Here we analyze the accuracy-
latency impact of ¢ and « using alternative values, while the
ensemble weight w is directly set by ML guidelines (§4.3).

Dispatcher cut-off c. Reducing ¢ from 1 will monoton-
ically but non-linearly increase the early-return ratio. In
Figure 8, by moving ¢ from 0.75 to 0.85 and 0.95, 92.4%, 87.4%,
and 69.8% of queries in SST-2 are early returned, thus increas-
ing both accuracy and latency. Tabi sets ¢ to 0.95 to meet
the accuracy target (95%). For MNLI, the patterns are similar:
59.4%, 49.4%, and 16.0% of queries are early returned, but the
accuracy does not significantly improve when c increases to
0.95, which is why Tabi sets ¢ to 0.85 to balance latency.

Word pruning ratio a. Increasing « will prune more
words from LLMs’ inputs, e.g., 3.8%, 14.2%, and 62.5% of
words are removed using & = 0.5, 0.7, and 0.9 for SST-2. For
SST-2, there is an exception that the accuracy when a = 0.7
is slightly higher than o = 0.5. We assume this is because
pruning a few words removes the noise in the data, and
the accuracy resumes decreasing when a = 0.8 when some
useful words are affected (not shown in the figure).

EuroSys ’23, May 08-12, 2023, Rome, ltaly

100 SST-2 MNLI 20
— o, B Accuracy —
3 L, 95.6% | | m
> 92.9% 94.0% Latency =
o 90. >
8 90 89.1% 2090
5 c
g g
< 8

80 10
0.75 0.85 0.95 0.75 0.85 0.95
Cut-off ¢

Figure 8. Impact of different ¢ on the combined accuracy
and latency. Selected values are in bold.

SST-2
I Accuracy
—— Latency
91.2% 91.4%

100 MNLI

w
w

85.8%

85.7% 85.5%

Accuracy (%)
N
wv
Latency (ms)

=
w

0.5

0.7 0.9 0.5 0.7 0.9

Pruning scale a

Figure 9. Impact of different @ on the re-routed accuracy
and latency. Selected values are in bold.

7.5 Discussion

System overheads. Tabi’s major overhead is running an
extra DNN for re-routed queries, which has been analyzed in
detail. We find that non-DNN overheads are minimal: Tabi’s
control logic (e.g., Equation 4, 5, and 6) constantly takes less
than or around 5ms per query, mostly on obtaining attention
weights, plus small tensor (e.g., softmax logits) operations.
Compared to the standard profiling, Tabi runs each model
~2.5 times on average to test « with our variable reusing
design at the same level of tens of minutes as INFaaS.

Compared to ML-native optimizations. We differenti-
ate Tabi from model compression and adaptive inference
by providing LLM-grade performance in model-less infer-
ence without per-model customization. Tabi works well with
optimized models (Table 1) by using them as the efficient
level, exploiting their speed and making up for their accuracy
losses. We evaluate an early-exit optimization, DeeBERT [80],
as shown in Table 4. While DeeBERT provides two optimized
base-size models out of the box which cannot meet our tar-
get accuracy, it shows 11%-40% latency reduction and <1%
accuracy loss compared to its own baselines. Tabi performs
better than the stock DeeBERT because early-exit requires
customization expertise and fine-tuning, and thus has limited
model choices. In addition, we customize and train an LLM-
size DeeBERT model with RoBERTa-large, which in theory
should have higher efficiency given Tabi’s system design.
We find that the early-exit LLM does not show a clear ad-
vantage in Table 4 because Tabi achieves extra gain through

12

Wang et al.
Task Tabi DeeBERT- DeeBERT- DeeBERT*-
as BERT-base RoBERTa-base | RoOBERTa-L
SST-2 95.6/40% 93/40% 94.4/26% | 95.9/38%
MNLI 90.4/22% 83.9/14% 87/19% | 90.4/24%

Table 4. Accuracy (%) and latency reduction of Tabi and
DeeBERT [80]. Tabi has similar performance even compared
to a customized LLM. * denotes requiring ML expertise.

Accuracy Mean Median 99% Level return
(%) latency latency latency distribution
90.2 22.0 12.7 49.4 45.6%/36.8%
(-02%) (+84%) (-23%) (+70.3%) /17.6%

Table 5. Compared to Tabi’s two-level decision, using three
models invokes the LLM less but prohibitively increases the
tail latency by 70.3%, and so does the mean.

attention-based word pruning. Nevertheless, early-exit will
perform better when accuracy targets are relaxed and not
requiring LLMs, as discussed in the next paragraph. Users
can apply a cost-benefit analyzer (e.g., LiteReconfig [83]) on
top of our profiling module to choose from system-based
and ML-native designs regarding the use case or incorpo-
rate it into Tabi’s controller to select candidates including
optimized models and benefit from Tabi’s architecture.

Relaxed target accuracy. For relaxed accuracy targets
that do not require LLMs and are out of our scope, we can
gracefully switch Tabi candidates to efficient single mod-
els. We test that the break-even points for SST-2 and MNLI
are 92% and 86% when Tabi has the same accuracy/latency
as a modern model, DeBERTa-small. Similarly, early-exit-
optimized RoBERTa-large can achieve 3% more latency re-
duction than Tabi only when accuracy targets are relaxed
under 91% and 87% respectively at the cost of giving up
model-less inference. Therefore, early-exit works best for
dedicated tasks with less strict accuracy requirements.

Using three levels. In our evaluation, Tabi rules out using
three or more models for exceeding tail latency. Here we
analyze the latency performance of using three models (with
DeBERTa-base) in Tabi for MNLI and the same setting. We
find that although the middle-sized model can further reduce
the workload of the LLM from 50.6% to 17.6%, the 99% tail
latency increases by 70.3% for serving challenging queries
with an extra model, making token pruning irrelevant and
this candidate impractical.

8 Related Work and Potential Extensions

DNN inference systems. INFaaS [57] and Cocktail [31]
are all-around inference systems that have been discussed in

Tabi: An Efficient Multi-Level Inference System for Large Language Models

detail. Clipper [15] is an early generalized inference system
that serves different application-level targets. PRETZEL [45],
Nexus [62], and TurboTransformers [23] focus on low-level
DNN execution efficiency which are complementary to our
work. sensAl [73] uses pruning to decompose a large model
into multiple binary classifiers to utilize more computation
devices. Clockwork [30] reduces the variability of GPU in-
ference latency by re-ordering queries based on their targets
and avoiding interference. MArk [86] focuses on cost-aware
resource procurement policies while managing the objec-
tives of the task. Many research works exploit serverless
cloud computing for DNN inference [8, 64]. LiteFlow [87]
designs a kernel-space fast path for efficient model inference.

ML optimizations. Research on adaptive inference, in-
cluding early-exit [80, 89] which reduces the depth of DNN
computation, and token pruning [29, 74] which shrinks the
data span, has been discussed in detail (§4 and §7.5). The sim-
ilar ideas of optimizing data (i.e., words or pixels) have been
discussed in CV systems [46, 76—-78]. Some works focus on re-
ducing the computational cost of the attention [66, 84] which
are orthogonal to our work. New model architectures [38, 59]
and compression techniques [28, 67] (e.g., quantization) try
to reduce the cost of LLMs while preserving their accuracy.
Tabi can serve them as candidates.

Potential extensions. Vision Transformers (ViTs) are a
new group of models that adapt this NLP architecture to
computer vision (CV) tasks like image classification [20].
Tabi should achieve comparable speedup when serving ViTs,
since they scale up similarly to LLMs [85], and our techni-
cal dependencies, especially attention-based token pruning,
have been recently explored on ViTs [39, 55]. For other mod-
els (e.g., CNNs), the benefits of Tabi will not be significant,
and the tail latency may not get offset, as our designs are
motivated by the scaling characteristics and the attention
mechanism that are unique to Transformers.

9 Conclusion

Delivering LLMs’ top-grade accuracy with model-less infer-
ence systems causes huge overheads. Tabi can reduce the
latency of serving LLMs while maintaining accuracy by shar-
ing LLMs’ heterogeneous workload with efficient models
based on per-query feedback. Tabi uses attention to reduce
system overheads and tail latency. We evaluate Tabi on multi-
ple datasets and find that Tabi reduces the average inference
latency of LLMs by 21%-40% regarding SOTA systems.

Acknowledgment

We thank the anonymous EuroSys reviewers and our shep-
herd Dr. Somali Chaterji for their constructive feedback and
suggestions. This work is supported in part by the Key-Area
R&D Program of Guangdong Province (2021B0101400001),

13

EuroSys ’23, May 08-12, 2023, Rome, ltaly

the Hong Kong RGC TRS T41-603/20-R, GRF-16213621, ITF-
ACCESS, the NSFC Grant 62062005, and the Turing Al Com-
puting Cloud (TACC) [82]. Haisheng Tan is partly supported
by the NSFC Grant 62132009, and Kun Guo is partly sup-
ported by the Natural Science Foundation of Fujian Province
Grant No0.2022J01118. We thank Yilun Jin and Han Tian for
providing valuable feedback regarding the early idea. Kai
Chen is the corresponding author.

References

[1] GlusterFS. https://www.gluster.org/.

[2] HuggingFace models. https://huggingface.co/models.

[3] HuggingFace Tokenizers. https://github.com/huggingface/tokenizers/.

[4] HuggingFace Transformers. https://github.com/huggingface/

transformers/.

5] PyTorch. https://pytorch.org/.

6] Redis. https://redis.io/.

7] TorchServe. https://github.com/pytorch/serve.

8] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Batch:

machine learning inference serving on serverless platforms with adap-

tive batching. In SC20: International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1-15. IEEE, 2020.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-

garet Shmitchell. On the dangers of stochastic parrots: Can language

models be too big? In Proceedings of the 2021 ACM Conference on

Fairness, Accountability, and Transparency, pages 610-623, 2021.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama.

Adaptive neural networks for efficient inference. In International

Conference on Machine Learning, pages 527-536. PMLR, 2017.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran

Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine

Bosselut, Emma Brunskill, et al. On the opportunities and risks of

foundation models. arXiv preprint arXiv:2108.07258, 2021.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140,

1996.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, et al. Language models are few-shot learners.

arXiv preprint arXiv:2005.14165, 2020.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D

Manning. What does bert look at? an analysis of bert’s attention. In

Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and

Interpreting Neural Networks for NLP, pages 276-286, 2019.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin,

Joseph E Gonzalez, and Ion Stoica. Clipper: A low-latency online pre-

diction serving system. In 14th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 17), pages 613-627, 2017.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and

Guoping Hu. Revisiting pre-trained models for Chinese natural lan-

guage processing. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: Findings, pages 657-668, On-

line, November 2020. Association for Computational Linguistics.

Shrey Desai and Greg Durrett. Calibration of pre-trained transformers.

In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 295-302, 2020.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[19] Thomas G Dietterich. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, pages 1-15, 2000.

[20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

— r—_——

[9

—

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

https://www.gluster.org/
https://huggingface.co/models
https://github.com/huggingface/tokenizers/
https://github.com/huggingface/transformers/
https://github.com/huggingface/transformers/
https://pytorch.org/
https://redis.io/
https://github.com/pytorch/serve

EuroSys ’23, May 08-12, 2023, Rome, ltaly

[21]

[22]

(23]

[24

—

[25]

[26]

[27]

(28]

[29

—

(30]

(31]

(32]

(33]

(34

=

(35

=

(36]

Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2020.

Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng
Zhang, Henry Hoffmann, and Junchen Jiang. Server-driven video
streaming for deep learning inference. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication, pages 557-570, 2020.

Hugging Face. Pipelines - Hugging Face, 2021. https://huggingface.co/
docs/transformers/main_classes/pipelines.

Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotrans-
formers: an efficient gpu serving system for transformer models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 389-402, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.
arXiv preprint arXiv:2101.03961, 2021.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
bert: A pre-trained model for programming and natural languages. In
Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 1536-1547, 2020.

Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay
Rottmann, Ana Sanchez, Aaron Nash, Liam Urbach, Vishesh Kakarala,
Richa Singh, et al. Massive: A 1m-example multilingual natural lan-
guage understanding dataset with 51 typologically-diverse languages.
arXiv preprint arXiv:2204.08582, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang,
Hassan Sajjad, Preslav Nakov, Deming Chen, and Marianne Winslett.
Compressing large-scale transformer-based models: A case study on
bert. Transactions of the Association for Computational Linguistics,
9:1061-1080, 2021.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan
Chakaravarthy, Yogish Sabharwal, and Ashish Verma. Power-bert:
Accelerating bert inference via progressive word-vector elimination.
In International Conference on Machine Learning, pages 3690-3699.
PMLR, 2020.

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving dnns like clock-
work: Performance predictability from the bottom up. In 14th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 20), pages 443-462, 2020.

Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Mahmut Taylan Kandemir, and Chita R Das. Cocktail: A
multidimensional optimization for model serving in cloud. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), April 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On cal-
ibration of modern neural networks. In International Conference on
Machine Learning, pages 1321-1330. PMLR, 2017.

Peizhen Guo, Bo Hu, and Wenjun Hu. Sommelier: Curating dnn models
for the masses. In Proceedings of the 2022 International Conference on
Management of Data, pages 1876-1890, 2022.

Abhishek Gupta. The imperative for sustainable ai systems. The
Gradient, 2021.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta:
Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert:
Modeling clinical notes and predicting hospital readmission. arXiv

14

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Wang et al.

preprint arXiv:1904.05342, 2019.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jef-
frey Dean, Gregory R Ganger, Gauri Joshi, Michael Kaminksy, Michael
Kozuch, Zachary C Lipton, et al. Accelerating deep learning by focus-
ing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.
Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The
efficient transformer. In International Conference on Learning Repre-
sentations, 2019.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Meng-
shu Sun, Bin Ren, Minghai Qin, Hao Tang, and Yanzhi Wang. Spvit:
Enabling faster vision transformers via soft token pruning. arXiv
preprint arXiv:2112.13890, 2021.

Anders Krogh, Jesper Vedelsby, et al. Neural network ensembles,
cross validation, and active learning. Advances in neural information
processing systems, 7:231-238, 1995.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate
uncertainties for deep learning using calibrated regression. In Interna-
tional Conference on Machine Learning, pages 2796-2804, 2018.
Meelis Kull, Miquel Perello Nieto, Markus Kéngsepp, Telmo Silva Filho,
Hao Song, and Peter Flach. Beyond temperature scaling: Obtaining
well-calibrated multi-class probabilities with dirichlet calibration. Ad-
vances in Neural Information Processing Systems, 32:12316-12326, 2019.
Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke,
Andrew Lee, Parker Hill, Jonathan K Kummerfeld, Kevin Leach,
Michael A Laurenzano, Lingjia Tang, et al. An evaluation dataset
for intent classification and out-of-scope prediction. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1311-1316, 2019.

Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. PRETZEL:
Opening the black box of machine learning prediction serving sys-
tems. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 611-626. USENIX Association, 2018.
Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and Xiaoou Tang.
Not all pixels are equal: Difficulty-aware semantic segmentation via
deep layer cascade. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3193-3202, 2017.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y
Ng, and Christopher Potts. Learning word vectors for sentiment
analysis. In Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pages 142-150,
2011.

Richard Maclin and David Opitz. An empirical evaluation of bagging
and boosting. AAAI/IAAI 1997:546-551, 1997.

Ankur Manna, Rohit Kundu, Dmitrii Kaplun, Aleksandr Sinitca, and
Ram Sarkar. A fuzzy rank-based ensemble of cnn models for classifi-
cation of cervical cytology. Scientific Reports, 11(1):1-18, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really
better than one? Advances in Neural Information Processing Systems,
32:14014-14024, 2019.

Laurel Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan
Leszczynski. Managing ml pipelines: feature stores and the coming
wave of embedding ecosystems. Proceedings of the VLDB Endowment,
14(12):3178-3181, 2021.

https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/docs/transformers/main_classes/pipelines

=

—

—

[

—

=

—

—

—

—

[t

—

Tabi: An Efficient Multi-Level Inference System for Large Language Models

[53] Titouan Parcollet and Mirco Ravanelli. The energy and carbon foot-

print of training end-to-end speech recognizers. 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ questions for machine comprehension of text. arXiv
preprint arXiv:1606.05250, 2016.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and
Cho-Jui Hsieh. Dynamicvit: Efficient vision transformers with dynamic
token sparsification. Advances in neural information processing systems,
34:13937-13949, 2021.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in
bertology: What we know about how bert works. Transactions of the
Association for Computational Linguistics, 8:842-866, 2020.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated model-less inference serving. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), July 2021.
Matthew J. Salganik and Robin C. Lee. To apply machine learn-
ing responsibly, we use it in moderation - New York Times
Open, 2020. https://open.nytimes.com/to-apply-machine-learning-
responsibly-we-use-it-in-moderation-d001f49e0644.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement prun-
ing: Adaptive sparsity by fine-tuning. 2020.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green
Al. Communications of the ACM, 63(12):54-63, 2020.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
a gpu cluster engine for accelerating dnn-based video analysis. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 322-337, 2019.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training
region-based object detectors with online hard example mining. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 761-769, 2016.

Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E Gon-
zalez, and Joseph M Hellerstein. Optimizing prediction serving on
low-latency serverless dataflow. arXiv preprint arXiv:2007.05832, 2020.
Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy
and policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243, 2019.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand
Joulin. Adaptive attention span in transformers. arXiv preprint
arXiv:1905.07799, 2019.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge
distillation for bert model compression. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4323-4332, 2019.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks.
In 2016 23rd International Conference on Pattern Recognition (ICPR),
pages 2464-2469. IEEE, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998-6008, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan
Titov. Analyzing multi-head self-attention: Specialized heads do the
heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5797
5808, 2019.

Mariko Wakabayashi. Speeding up transformer CPU inference in
Google Cloud - Twitter, 2021. https://blog.twitter.com/engineering/

EuroSys ’23, May 08-12, 2023, Rome, ltaly

en_us/topics/insights/2021/speeding-up-transformer-cpu-inference-
in-google-cloud.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353355, 2018.

Guanhua Wang, Zhuang Liu, Brandon Hsieh, Siyuan Zhuang, Joseph
Gonzalez, Trevor Darrell, and Ion Stoica. sensai: Convnets decomposi-
tion via class parallelism for fast inference on live data. Proceedings of
Machine Learning and Systems, 3, 2021.

Hanrui Wang, Zhekai Zhang, and Song Han. SpAtten: Efficient sparse
attention architecture with cascade token and head pruning. In 2021
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 97-110. IEEE, 2021.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming
Zhou. Minilm: Deep self-attention distillation for task-agnostic com-
pression of pre-trained transformers. Advances in Neural Information
Processing Systems, 33:5776-5788, 2020.

Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and
Kai Chen. Enabling edge-cloud video analytics for robotics applica-
tions. In Proceedings of the IEEE International Conference on Computer
Communications, Virtual Conference, pages 10-13, 2021.

Yiding Wang, Weiyan Wang, Duowen Liu, Xin Jin, Junchen Jiang, and
Kai Chen. Enabling edge-cloud video analytics for robotics applica-
tions. IEEE Transactions on Cloud Computing, 2022.

Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai
Chen. Bridging the edge-cloud barrier for real-time advanced vision
analytics. In HotCloud, 2019.

Lilian Weng. Attention? attention! 2018. https:/lilianweng.github.io/
lil-log/2018/06/24/attention-attention.html.

[80] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert:

Dynamic early exiting for accelerating bert inference. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics,
pages 2246-2251, 2020.

Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. Bert post-training for
review reading comprehension and aspect-based sentiment analysis.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 2324-2335, 2019.
Kaigiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao,
Decang Sun, Chaoliang Zeng, and Kai Chen. Tacc: A full-stack cloud
computing infrastructure for machine learning tasks. arXiv preprint
arXiv:2110.01556, 2021.

Ran Xu, Jayoung Lee, Pengcheng Wang, Saurabh Bagchi, Yin Li, and
Somali Chaterji. Litereconfig: cost and content aware reconfiguration
of video object detection systems for mobile gpus. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 334-351,
2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula,
Qifan Wang, Li Yang, et al. Big bird: Transformers for longer sequences.
In NeurlPS, 2020.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer.
Scaling vision transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12104-12113, 2022.
Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark: Ex-
ploiting cloud services for cost-effective, slo-aware machine learning
inference serving. In 2019 {USENIX} Annual Technical Conference
({USENIX} {ATC} 19), pages 1049-1062, 2019.

[87] Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai

Chen. Liteflow: towards high-performance adaptive neural networks
for kernel datapath. In Proceedings of the ACM SIGCOMM 2022 Confer-
ence, pages 414-427, 2022.

https://open.nytimes.com/to-apply-machine-learning-responsibly-we-use-it-in-moderation-d001f49e0644
https://open.nytimes.com/to-apply-machine-learning-responsibly-we-use-it-in-moderation-d001f49e0644
https://blog.twitter.com/engineering/en_us/topics/insights/2021/speeding-up-transformer-cpu-inference-in-google-cloud
https://blog.twitter.com/engineering/en_us/topics/insights/2021/speeding-up-transformer-cpu-inference-in-google-cloud
https://blog.twitter.com/engineering/en_us/topics/insights/2021/speeding-up-transformer-cpu-inference-in-google-cloud
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

EuroSys ’23, May 08-12, 2023, Rome, ltaly Wang et al.

[88] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Systems, Applications, and Services, pages 81-93, 2021.
Yuqing Yang, and Yunxin Liu. nn-meter: towards accurate latency [89] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and
prediction of deep-learning model inference on diverse edge devices. Furu Wei. Bert loses patience: Fast and robust inference with early
In Proceedings of the 19th Annual International Conference on Mobile exit. Advances in Neural Information Processing Systems, 33, 2020.

16

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Resource Overhead of LLMs
	2.2 DNN Inference Systems
	2.3 Pay Attention to Transformers

	3 Tabi Overview
	4 Multi-Level Inference Engine
	4.1 Probabilistic Dispatcher
	4.2 Attention-Based Word Pruning
	4.3 Weighted Multi-Level Ensemble

	5 Model Candidate Profiling and Selection
	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Overall Performance
	7.3 Performance Breakdown
	7.4 Sensitivity Analysis
	7.5 Discussion

	8 Related Work and Potential Extensions
	9 Conclusion
	References

